Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T09:42:31.095Z Has data issue: false hasContentIssue false

Powder diffraction data and Rietveld refinement for Y-doped (ZnO)5In2O3

Published online by Cambridge University Press:  10 January 2013

W. Pitschke
Affiliation:
Institute of Solid State and Materials Research Dresden, PF 270016, D-01171 Dresden, Germany
K. Koumoto
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8603, Japan

Abstract

Indexed X-ray powder diffraction data are reported for the homologous compound (ZnO)5(In1−xYx)2O3. The structures of (ZnO)5In2O3 and of (ZnO)5(In1−xYx)2O3 were refined by the Rietveld technique on the basis of the space group Rm. Refined unit cell dimensions are a=3.3285(1) Å, c=58.127(2) Å, V=557.71(3) Å3, Dx=6.11 g/cm3, Rwp=10.52, RB=8.56 for (ZnO)5In2O3, and a=3.3505(1) Å, c=57.863(1) Å, V=562.53(2) Å3, Dx=5.97 g/cm3, Rwp=9.05, RB=6.94 for (ZnO)5(In0.8Y0.2)2O3. The structure of (ZnO)5In2O3 was shown to be isostructural with (ZnO)5LuFeO3. Y3+ ions were determined to be arranged at the 3a-metal sites substituting for In3+ ions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caglioti, G., Paoletti, A. M., and Ricci, F. R. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum. 3, 223228.CrossRefGoogle Scholar
Cannard, P. J., and Tilley, R. J. D. (1988). “New intergrowth phases in the ZnO-In 2O 3 system,” J. Solid State Chem. 73, 418426.CrossRefGoogle Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model,” Acta Crystallogr. 19, 267272.Google Scholar
Hiramatsu, H., Ohta, H., Seo, W.-S., and Koumoto, K. (1997). “Thermoelectric properties of (ZnO)5In 2O 3 thin films prepared by rf sputtering method,” J. Jpn. Soc. Powder Metall. 44, 4449.CrossRefGoogle Scholar
Isobe, M., Kimizuka, N., Nakamura, M., and Mohri, T. (1994). “Structures of LuFeO 3(ZnO)m (m=1, 4, 5 and 6),” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 50, 332336.CrossRefGoogle Scholar
Kasper, H. (1967). “Neuartige Phasen mit wurtzitähnlichen Strukturen im System ZnO-In 2O 3,Z. Anorg. Allg. Chem. 349, 113224.CrossRefGoogle Scholar
Kazeoka, M., Hiramatsu, H., Seo, W.-S., and Koumoto, K. (1998). “Improvement in thermoelectric properties of (ZnO)5In 2O 3 through partial substitution of yttrium for indium,” J. Mater. Res.(in press).CrossRefGoogle Scholar
Kimizuka, N., Isobe, M., and Nakamura, M. (1995). “Syntheses and single-crystal data of homologous compound, In 2O 3(ZnO)m (m=3, 4, and 5), InGaO 3(ZnO)3, and Ga 2O 3(ZnO)m (m=7, 8, 9, and 16) in the In 2O 3-ZnGa 2O 4-ZnO system,” J. Solid State Chem. 116, 170178.CrossRefGoogle Scholar
Kraus, W., and Nolze, G. (1995). “Powder Cell-Ein Programm zur Simulation von Röntgenbeugungsdiagrammen,” Z. Kristallogr. Suppl.Issue No.9, 197.Google Scholar
March, A. (1932). “Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation,” Z. Kristallogr. 81, 285297.CrossRefGoogle Scholar
Minami, T., Kakumu, T., Takeda, Y., and Takata, S. (1996a). “Highly transparent and conductive ZnO-In 2O 3 thin films prepared by dc magnetron sputtering,” Thin Solid Films 290–291, 15.CrossRefGoogle Scholar
Minami, T., Kakumu, T., Takeda, Y., and Takata, S. (1996b). “Preparation of transparent and conductive In 2O 3-ZnO films by radio frequency magneutron sputtering,” J. Vac. Sci. Technol. 14, 17041708.CrossRefGoogle Scholar
Nakamura, M., Kimizuka, N., and Mohri, T. (1990). “The phase relations in the In 2O 3-Fe 2ZnO 4-ZnO system at 1350 °C,” J. Solid State Chem. 86, 1640.CrossRefGoogle Scholar
Ohta, H., Sea, W.-S., and Koumoto, K. (1996). “Thermoelectric properties of homologous compounds in the ZnO-In 2O 3 system,” J. Am. Ceram. Soc. 79, 21932196.CrossRefGoogle Scholar
Powder Diffraction File, JCPDS-International Centre for Diffraction Data, Newtown Square Corporate Campus, 12 Campus Boulevard, Newtown Square, PA 19073-3273.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatonic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751767.CrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L. (1979). “F N: A criterionfor rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Tanaka, Y., Ifuku, T., Tsuchida, K., and Kato, A. (1997). “Thermoelectric properties of ZnO-based materials,” J. Mater. Sci. Lett. 16, 155157.CrossRefGoogle Scholar
Young, R. A., and Wiles, D. B. (1982). “Profile shape functions in Rietveld analysis,” J. Appl. Crystallogr. 15, 430438.CrossRefGoogle Scholar