Skip to main content Accessibility help

In-situ monitoring of vanadium dioxide formation using high-temperature XRD

  • Mark A. Rodriguez (a1), Nelson S. Bell (a1), James J. M. Griego (a1), Cynthia V. Edney (a1) and Paul G. Clem (a1)...


The monoclinic-to-tetragonal phase transition (~70 °C) in vanadium dioxide (VO2) strongly impacts the infrared properties, which enables its use in applications such as smart window devices. Synthesis of VO2 can be challenging due to the variability of vanadium oxide phases that may be formed. We have employed high-temperature X-ray diffraction (HTXRD) to monitor the reaction process of vanadium oxide precursor powders to form the desired tetragonal VO2 phase. Single-phase tetragonal VO2 was formed within 30 min at 420 °C in flowing N2 gas (~50 ppm O2). The monoclinic-to-tetragonal phase transformation was observed via HTXRD at ~70 °C with the typical ~10 °C hysteresis (i.e. approached from above or below the transition).


Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail:


Hide All
Briggs, R. M., Pryce, I. M., and Atawater, H. A. (2010). “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 1119211201.
Enjalbert, R. and Galy, J. (1986). “A refinement of the structure of V2O5,” Acta Crystallogr. C 42, 14671469.
ICDD (2012). PDF4+ 2012 Database (International Centre for Diffraction Data, Newtown Square, PA).
Lazarovits, B., Kim, K., Haule, K., and Kotliar, G. (2010). “Effects of strain on the electronic structure of VO2,” Phys. Rev. B 81, 115117.
Longo, J. M., and Kierkegaard, P. (1970). “A refinement of the structure of VO2,” Acta Chem. Scand. 24, 420426.
Lu, Z., Li, C., and Yin, Y. (2011). “Synthesis and thermochromic properties of vanadium dioxide colloidal particles,” J. Mater. Chem. 21, 1477614782.
Manning, T. D., Parkin, I. P., Pemble, M. E., Sheel, D., and Vernardou, D. (2004). “Intelligent window coatings: atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide,” Chem. Mater. 16, 744749.
Oka, Y., Yao, T., Yamamoto, N., Ueda, Y., and Hayashi, A. (1993). “Phase transition and V4+–V4+ pairing in VO2(B),” J. Solid State Chem. 105, 271272.
Rogers, K. D. (1993). “An X-ray diffraction study of semiconductor and metallic vanadium dioxide,” Powder Diffr. 8, 240244.
Vincent, M. G., Yvon, K., and Ashkenzi, J. (1980). “Electron-density studies of metal-metal bonds. II. The deformation density of V2O3 at 295 K,” Acta Crystallogr. A36, 808813.
Waltersson, K., Forlund, B., and Wilhelmi, K. A. (1974). “The crystal structure of V3O7,” Acta Crystallogr. B 30, 26442652.
Wilhelmi, K. A., Waltersson, K., and Kihlborg, L. (1971). “A refinement of the crystal structure of V6O13,” Acta Chem. Scand. 25, 26752687.
Yamamoto, S., Kasai, N., and Shimakawa, Y. (2009). “Preparation of monodisperse and spherical Rutile VO2 fine particles,” Chem. Mater. 21, 198200.
Yang, Z., Ko, C., and Ramanathan, S. (2011). “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41, 337367.


In-situ monitoring of vanadium dioxide formation using high-temperature XRD

  • Mark A. Rodriguez (a1), Nelson S. Bell (a1), James J. M. Griego (a1), Cynthia V. Edney (a1) and Paul G. Clem (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed