Skip to main content Accessibility help

Implementation of the self-consistent Kröner–Eshelby model for the calculation of X-ray elastic constants for any crystal symmetry

  • Arnold C. Vermeulen (a1), Christopher M. Kube (a2) and Nicholas Norberg (a1)


In this paper, we will report about the implementation of the self-consistent Kröner–Eshelby model for the calculation of X-ray elastic constants for general, triclinic crystal symmetry. With applying appropriate symmetry relations, the point groups of higher crystal symmetries are covered as well. This simplifies the implementation effort to cover the calculations for any crystal symmetry. In the literature, several models can be found to estimate the polycrystalline elastic properties from single crystal elastic constants. In general, this is an intermediate step toward the calculation of the polycrystalline response to different techniques using X-rays, neutrons, or ultrasonic waves. In the case of X-ray residual stress analysis, the final goal is the calculation of X-ray Elastic constants. Contrary to the models of Reuss, Voigt, and Hill, the Kröner–Eshelby model has the benefit that, because of the implementation of the Eshelby inclusion model, it can be expanded to cover more complicated systems that exhibit multiple phases, inclusions or pores and that these can be optionally combined with a polycrystalline matrix that is anisotropic, i.e., contains texture. We will discuss a recent theoretical development where the approaches of calculating bounds of Reuss and Voigt, the tighter bounds of Hashin–Shtrikman and Dederichs–Zeller are brought together in one unifying model that converges to the self-consistent solution of Kröner–Eshelby. For the implementation of the Kröner–Eshelby model the well-known Voigt notation is adopted. The 4-rank tensor operations have been rewritten into 2-rank matrix operations. The practical difficulties of the Voigt notation, as usually concealed in the scientific literature, will be discussed. Last, we will show a practical X-ray example in which the various models are applied and compared.


Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail:


Hide All
Behnken, H. (1992). “Berechnung und Ermittlung der rontgenographischen Elastizitatskonstanten sowie de Mikro- und Makro-Spannungen heterogener und textierter Werkstoffe,” Doctorate thesis, RWTH, Aachen.
Behnken, H., and Hauk, V. (1986). “Berechnung der röntgenographischen Elastizitätskonstanten (REK) des Vielkristalls aus den Einkristalldaten für beliebige Kristallsymmetrie,” Z. Metallkde. 77, 620626.
Brown, J. M., Abrahamson, E. H., and Angel, R. J. (2006). “Triclinic elastic constants for low albite,” Phys. Chem. Miner. 33, 256265.
Brown, J. M., Angel, R. J., and Ross, N. L. (2016). “Elasticity of plagioclase feldspars,” J. Geophys. Res. Solid Earth 121, 663675.
Cullity, B. D. (1956). Elements of X-ray Diffraction (Addison-Wesley Publishing Company, Reading, Massachusetts).
Dederichs, P. H., and Zeller, R. (1973). “Variational treatment of the elastic constants of disordered materials,” Z. Phys. 259, 103116.
Eshelby, J. D. (1957). “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. R. Soc. Lond. A241, 376396.
Gairola, B. K. D., and Kröner, E. (1981). “A simple formula for calculating the bounds and the self-consistent value of the shear modulus of a polycrystalline aggregate of cubic crystals,” Int. J. Eng. Sci. 19, 865869.
Gnäupel-Herold, T., Creuziger, A. A., and Iadicola, M. (2012). “A model for calculating diffraction elastic constants,” J. Appl. Crystallogr. 45, 197206.
Hashin, Z., and Shtrikman, S. (1962 a). “On some variational principles in anisotropic and nonhomogeneous elasticity,” J. Mech. Phys. Solids 10, 335342.
Hashin, Z., and Shtrikman, S. (1962 b). “A variational approach to the theory of the elastic behavior of polycrystals,” J. Mech. Phys. Solids 10, 343352.
Helnwein, P. (2001). “Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors,” Comput. Methods. Appl. Mech. Eng. 190(22–23), 27532770.
Hershey, A. V. (1954). “The elasticity of an isotropic aggregate of anisotropic cubic crystals,” J. Appl. Mech. 21(3), 236240.
Hill, R. (1952). “The elastic behavior of a crystalline aggregate,” Proc. Phys. Soc. A 65, 349354.
Kim, H. S., Hong, S. I., and Kim, S. J. (2001). “On the rule of mixtures for predicting the mechanical properties of composites with homogeneously distributed soft and hard particles,” J. Mater. Process. Tech. 112, 109113.
Kneer, G. (1963). “Die elastischen Konstanten quasiisotroper Vielkristallaggregate,” Phys. Status Solidi 3, K331K335.
Krishnan, R. S., Radha, V., and Gopal, E. S. R. (1971). “Elastic constants of triclinic copper sulphate pentahydrate crystals,” J. Phys. D: Appl. Phys. 4, 171173.
Kröner, E. (1958). “Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls.,” Z. Phys. 151, 504518.
Kröner, E. (1978). “Self-consistent scheme and graded disorder in polycrystal elasticity,” J. Phys. F: Met. Phys. 8, 22612267.
Kube, C. M., and de Jong, M. (2016). “Elastic constants of polycrystals with generally anisotropic crystals,” J. Appl. Phys. 120, 165105, 1–14.
Kuppers, H., and Siegert, H. (1970). “The elastic constants of the triclinic crystals, ammonium and potassium tetraoxalate dihydrate,” Acta Crystallogr. A 26, 401405.
Murray, C. E., Jordan-Sweet, J. L., Bedell, S. W., and Ryan, E. T. (2015). “Stress determination through diffraction: establishing the link between Kröner and Voigt/Reuss limits,” Powder Diffr. 30, 99103.
Neerfeld, H. (1942). “Zur Spannungsberechnung aus röntgenographischen Dehnungsmessungen,” Mitt. K.-Wilh.-Inst. Eisenforsch. 24, 6170.
Reuss, A. (1929). “Berechnung der Flieβgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle,” Z. Angew. Math. Mech. 9, 4958.
Stickfort, J. (1966). “Über den Zusammenhang zwischen röntgenographischer Gitterdehnung und makroskopischen elastischen Spannungen,” Tech. Mitt. Krupp, Forsch.-Ber. 24, 89102.
Voigt, W. (1887). “Theoretische Studien über das Elasticitatsverhaltnisse der Kristalle,” Abh. Kgl. Ges. Wiss. Göttingen 34, 352, 53–100.


Implementation of the self-consistent Kröner–Eshelby model for the calculation of X-ray elastic constants for any crystal symmetry

  • Arnold C. Vermeulen (a1), Christopher M. Kube (a2) and Nicholas Norberg (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed