Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-26T19:16:29.367Z Has data issue: false hasContentIssue false

High-resolution X-ray diffraction analysis of InN films grown by metalorganic vapor phase epitaxy

Published online by Cambridge University Press:  01 March 2012

W. J. Wang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China and VBL, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
K. Sugita
Affiliation:
Department of Electrical and Electronics Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
Y. Nagai
Affiliation:
Department of Electrical and Electronics Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
Y. Houchin
Affiliation:
Department of Electrical and Electronics Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
A. Hashimoto
Affiliation:
Department of Electrical and Electronics Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
A. Yamamoto
Affiliation:
Department of Electrical and Electronics Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

Abstract

The growth temperature dependence of the InN film’s crystalline quality is reported. InN films are grown on sapphire substrates from 570 to 650 °C with low-temperature GaN buffers by metalorganic vapor phase epitaxy (MOVPE). The X-ray rocking curves and reciprocal space mappings of the symmetric reflection (0 0 0 2) and asymmetric reflection (1 0 1 2) are measured with high resolution X-ray diffraction. The results indicate that the crystallinity is sensitive to the growth temperature for MOVPE InN. At growth temperature 580 °C, highly crystalline InN film has been obtained, for which the full-width-at-half-maxima of (0 0 0 2) and (1 0 1 2) rocking curves are 24 and 28 arcmin, respectively. The crystalline quality deteriorates drastically when the growth temperature exceeds 600 °C. Combined with the carrier concentration and mobility, the approach to improve the quality of InN film by MOVPE is discussed.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhuiyan, A. G., Hashimoto, A., and Yamamoto, A. (2003a). “Indium nitride (InN): a review on growth, characterization, and properties, ” J. Appl. Phys.JAPIAU10.1063/1.1595135 94, 27792808.CrossRefGoogle Scholar
Bhuiyan, A. G., Sugita, K., Kasashima, K., Hashimoto, A., Yamamoto, A., and Davydov, V. Y. (2003b). “Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy, ” Appl. Phys. Lett.APPLAB10.1063/1.1632038 83, 47884790.CrossRefGoogle Scholar
Davydov, V. Y., Klochikhin, A. A., Emtsev, V. V., Ivanov, S. V., Vekshin, V. V., Bechstedt, F., Furthmüller, J., Harima, H., Mudryi, A. V., Hashimoto, A., Yamamoto, A., Aderhold, J., Graul, J., and Haller, E. E. (2002). “Band gap of InN and In-rich InxGa1-xN alloys (0.36<x<1), ” Phys. Status Solidi BPSSBBD10.1002/1521-3951(200204)230:2<R4::AID-PSSB99994>3.0.CO;2-Z 230, R4R6.3.0.CO;2-Z>CrossRefGoogle Scholar
Dimakis, E., Konstantinids, G., Tsagaraki, K., Adikimenakis, A., Iliopoulos, E., and Georgakilas, A. (2004). “The role of nucleation temperature in In-face InN-on-GaN(0001) growth by plasma-assisted molecular beam epitaxy, ” Superlattices Microstruct.SUMIEK10.1016/j.spmi.2004.09.010 36, 497507.CrossRefGoogle Scholar
Higashiwaki, M. and Matsui, T. (2003). “Epitaxial growth of high-quality InN films on sapphire substrates by plasma-assisted molecular-beam epitaxy, ” J. Cryst. GrowthJCRGAE10.1016/S0022-0248(03)00918-7 252, 128135.CrossRefGoogle Scholar
Koukitu, A., Takahashi, N., and Seki, H. (1997). “Thermodynamic study on metalorganic vapor-phase epitaxial growth of group III nitrides, ” Jpn. J. Appl. Phys., Part 2JAPLD810.1143/JJAP.36.L1136 Part 2 36, L1136L1138.CrossRefGoogle Scholar
Wu, J., Walukiewicz, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Lu, H., Schaff, W. J., Saito, Y., and Nanishi, Y. (2002). “Unusual properties of the fundamental band gap of InN, ” Appl. Phys. Lett.APPLAB10.1063/1.1482786 80, 39673969.CrossRefGoogle Scholar
Wu, J., Walukiewicz, W., Shan, W., Yu, K. M., Ager, J. W. III, Li, S. X., Haller, E. E., Lu, H., and Schaff, W. J. (2003). “Temperature dependence of the fundamental band gap of InN, ” J. Appl. Phys.JAPIAU10.1063/1.1605815 94, 44574460.CrossRefGoogle Scholar
Yamamoto, A., Murakami, Y., Koide, K., Adachi, M., and Hashimoto, A. (2001). “Growth temperature dependences of MOVPE InN on sapphire substrates, ” Phys. Status Solidi BPSSBBD10.1002/1521-3951(200111)228:1<5::AID-PSSB5>3.0.CO;2-E 228, 58.3.0.CO;2-E>CrossRefGoogle Scholar
Yamamoto, A., Tanaka, T., Koide, K., and Hashimoto, A. (2002). “Improved electrical properties for metalorganic vapour phase epitaxial InN films, ” Phys. Status Solidi APSSABA10.1002/1521-396X(200212)194:2<510::AID-PSSA510>3.0.CO;2-6 194, 510514.3.0.CO;2-6>CrossRefGoogle Scholar
Yamamoto, A., Imai, N., Sugita, K., and Hashimoto, A. (2004). “Employment of a GaN buffer in the OMVPE growth of InN on sapphire substrates, ” J. Cryst. GrowthJCRGAE10.1016/j.jcrysgro.2003.11.040 261, 271274.CrossRefGoogle Scholar
Yamamoto, A., Miwa, H., Shibata, Y., and Hashimoto, A. (2006). “The most possible donor in InN grown by metalorganic vapor-phase epitaxy, ” Thin Solid FilmsTHSFAP10.1016/j.tsf.2005.07.175 494, 7478.CrossRefGoogle Scholar