Skip to main content Accessibility help

Effect of mechanical constraint on the hydration properties of Na-montmorillonite: study under extreme relative humidity conditions

  • Walid Oueslati (a1), Nejmeddine Chorfi (a2) and Mohamed Abdelwahed (a2)


The evaluation of the performance of a geological barrier, consisting essentially of a clay matrix, in the context of industrial and household waste confinement must go with the study of its hydration behavior respectively under extreme atmospheric conditions and variable mechanical soil constraints. Na-montmorillonite (Swy-2) is used, as starting materials, in order to establish the link between applied externals strain (variable relative humidity rate %RH and axial mechanical constraint) and the hydration material response. All constraints are realized at the laboratory scale. This work is achieved using oedometric testing and quantitative X-ray diffraction (XRD) analysis, based on the modeling approach, which consists in the comparison of experimental 00l reflections with the calculated ones deduced from structural models. This approach allows us to quantify the interlamellar space configuration and all structural changes along the c* axis. Obtained results show a decrease for the void ratio e value along the compaction/reswelling process. The “insitu” XRD analysis realized at 5%RH demonstrates hydration shift, from dehydrated water layer (i.e. 0W) to monohydrated water layer (i.e. 1W), attributed to the applied mechanical constraint. At 90%RH, the sample hydration state remains at tri-hydrated water layer (3W) with a clear interstratified trends.


Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail:


Hide All
Ammar, M., Oueslati, W., Ben Rhaiem, H., and Ben Haj Amara, A. (2013). “XRD profile modeling approach tools to investigate the effect of charge location on hydration behavior in the case of metal exchanged smectite,” Powder Diffr. 28, S284S300.
Ammar, M., Oueslati, W., Rhaiem, H. B., and Ben Haj Amara, A. (2014). “Effect of the hydration sequence orientation on the structural properties of Hg exchanged montmorillonite: quantitative XRD analysis,” J. Environ. Chem. Eng. 2, 16041611.
Ammar, M., Oueslati, W., Chorfi, N., and Ben Haj Amara, A. (2015). “The water retention mechanism of a Cs+ and Na+ exchanged montmorillonite: effect of relative humidity and ionic radius on the interlayer,” Powder Diffr. 30, S70S75.
Atkinson, J. H. and Bransby, P. L. (1978). The Mechanics of Soils (McGraw-Hill, London).
Bailey, S. W. (1982). “Nomenclature for regular interstratifications,” Am. Mineral. 67, 394398.
Barclay, L. and Ottewill, R. H. (1970). “Measurement of forces between colloidal particles,” Spec. Discuss. Faraday Soc. 1, 138147.
Ben Brahim, J., Armagan, N., Besson, G., and Tchoubar, C. (1983). “X-ray diffraction studies on the arrangement of water molecules in a smectite. I. Two-waterlayer Na-beidellite,” J. Appl. Crystallogr. 16, 264269.
Ben Rhaiem, H., Tessier, D., and Pons, C. H. (1986). “Comportement hydrique et evolution structurale et texturale des montmorillonites au cours d'un cycle de dessiccation-humectation. I. Cas des montmorillonites calciques,” Clay Miner. 21, 929.
Ben Rhaiem, H., Pons, C. H., and Tessier, D. (1987). “Factors affecting the macrostructure of smectites. Role of cation and history of applied stresses,” in Proc. Int. Clay Conf., edited by Schultz, L. A., Van Ophen, H. and Mumpton, F. A. (The Clay Minerals Society, Denver), pp. 292297.
Ben Rhaiem, H., Tessier, D., and Ben Haj Amara, A. (2000). “Mineralogy of the <2 mm fraction of three mixed-layer clays from southern and central Tunisia,” Clay Miner. 35, 375381.
Bèrend, I., Cases, J. M., François, M., Uriot, J. P., Michot, L. J., Masion, A., and Thomas, F. (1995). “Mechanism of adsorption and desorption of water vapour by homoionic montmorillonites: 2. The Li+ , Na+ , K+ , Rb+ and Cs+ exchanged forms,” Clays Clay Miner. 43, 324336.
Claret, F., Bauer, A., Schäfer, T., Griffault, L., and Lanson, B. (2002). “Experimental investigation of the interaction of clays with high-pH solutions: a case study from the Callovo-Oxfordian formation, Meuse-Haute Marne underground laboratory (France),” Clays Clay Miner. 50(5), 633646.
Denis, J. H., Keall, M. J., Hall, P. L., and Meeten, G. H. (1991). ” Influence of potassium concentration on the swelling and compaction of mixed (na,k) ion-exchanged montmorillonite,” Clay Miner. 26, 255268.
Drits, V. A. and Sakharov, B. A. (1976). X-Ray Structure Analysis of Mixed-Layer Minerals (Nawka, Moscow), p. 256 (in Russian).
Drits, V. A. and Tchoubar, C. (1990). X-ray Diffraction by Disordered Lamellar Structures: Theory and Applications to Microdivided Silicates and Carbons (Springer, Berlin, Germany).
Drits, V. A., Srodon, J., and Eberl, D. D. (1997). “XRD measurement of mean crystallite thickness of illite and illite/smectite: reappraisal of the kubler index and the scherrer equation,” Clays Clay Miner. 45, 461475.
Drits, V. A., Sakharov, B. A., Salyn, A. L., and Lindgreen, H. (2005). “Determination of the content and distribution of fixed ammonium in illite-smectite using a modified X-ray diffraction technique: application to oil source rocks of western Greenland,” Am. Mineral. 90, 7184.
El Hafid, K. and Hajjaji, M. (2016). “Alkali-etched heated clay: microstructure and physical/mechanical properties,” J. Asian Ceram. Soc. 4(3), 234242.
Ferrage, E., Lanson, B., Sakharov, B. A., and Drits, V. A. (2005). “Investigation of smectite hydration properties by modeling of X-ray diffraction profiles. Part 1. Montmorillonite hydration properties,” Am. Miner. 90, 13581374.
Ferrage, E., Sakharov, B. A., Michot, L. J., Delville, A., Bauer, A., Lanson, B., Grangeon, S., Frapper, G., Jimenez-Ruiz, M., and Cuello, G. J. (2011). “Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 2. Toward a precise coupling between molecular simulations and diffraction data,” J. Phys. Chem. C, 115, 18671881.
Gaillot, A. C., Flot, D., Drits, V. A., Manceau, A., Burghammer, M., and Lanson, B. (2003). “Structure of synthetic K-rich birnessite obtained by high temperature decomposition of KMnO4. I. Two layer polytype from 800°C experiment,” Chem. of Mater. 15, 46664678.
Grangeon, S., Claret, F., Linard, Y., and Chiaberge, C. (2013). “X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates,” Acta Crystallogr. B69, 465473.
Grangeon, S., Lanson, B., Lanson, M., and Manceau, A. (2008). “Crystal structure of Ni-Sorbed synthetic vernadite: a powder X-ray diffraction study,” Mineral. Mag. 72, 12791291.
Gualtieri, A. F. (1999). “Modeling the nature of disorder in talc by simulation of X-ray powder patterns,” Eur. J. Mineral. 11, 521532.
Gualtieri, A. F., Ferrari, S., Leoni, M., Grathoff, G., Hugo, R., Shatnawi, M., Paglia, G., and Billinge, S. (2008). “Structural characterization of the clay mineral illite 1 M,” J. Appl. Crystallogr. 41, 402415.
Katti, D., Ghosh, P., Schmidt, S., and Katti, K. S. (2005). “Mechanical properties of the sodium montmorillonite interlayer intercalated with amino acids,” Biomacromolecules 6(6), 32763282.
Laird, D. A. (1996). “Model for crystalline swelling of 2:1 phyllosilicates,” Clays Clay Miner. 44, 553559.
Laird, D. A. (1999). “Layer charge infl uences on the hydration of expandable 2:1 phyllosilicates,” Clays Clay Miner. 47, 630636.
Lanson, B. (2011). “Modelling of X-ray diffraction profiles: investigation of defective lamellar structure crystal chemistry,” EMU Notes Mineral. 11, 151202 (Chapter 4).
Lanson, B., Drits, V. A., Feng, Q., and Manceau, A. (2002 a). “Crystal structure of synthetic Na-rich birnessite: evidence for a triclinic one-layer cell,” Am. Mineral. 87, 16621671.
Lanson, B., Drits, V. A., Gaillot, A.-C., Silvester, E. J., Plançon, A., and Manceau, A. (2002 b). “Structure of heavy-metal sorbed birnessite. Part 1. Results from X-ray diffraction,” Am. Mineral. 87, 16311645.
Lutterotti, L., Voltolini, M., and Wenk, H. R., Bandyopadhyay, K., and Vanorio, T. (2010). “Texture analysis of a turbostratically disordered Ca-montmorillonite,” Am. Mineral. 95, 98103.
Manceau, A., Drits, V. A., Silvester, E., Bartoli, C., and Lanson, B. (1997). “Structural mechanism of Co2+ oxidation by the phyllomanganate buserite,” Am. Mineral. 82, 11501175.
Manevitch, O L. and Rutledge, G C. (2004). “Elastic properties of a single lamella of montmorillonite by molecular dynamics simulation,” J. Phys. Chem. B 108(4), 14281435.
Mèring, J. and Glaeser, R. (1954). “Sur le rôle de la valence des cations Èchangeables dans la montmorillonite,” Bulletin de la Sociètè Francaise de Minèralogie et Cristallographie 77, 519530.
Mermut, A. R. and Cano, A. F. (2001). “Baseline studies of the clay minerals society source clays: chemical analyses of major elements,” Clays Clay Miner. 49(5), 381386.
Mesri, G. and Olson, R. E. (1971). “Mechanisms controlling the permeability of clays,” Clays Clay Miner. 19, 151158.
Moll, W. F. (2001). “Baseline studies of the clay minerals society source clays: geological Origin,” Clays Clay Miner. 49, 374380.
Moore, D. M. and Reynolds, R. C. Jr., (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals (Oxford University Press, New York).
Oueslati, W., Ben Rhaiem, H., and Ben Haj Amara, A. (2011). “XRD investigations of hydrated homoionic montmorillonite saturated by several heavy metal cations,” Desalination 271, 139149.
Oueslati, W., Ben Rhaiem, H., and Ben Haj Amara, A. (2012). “Effect of relative humidity constraint on the metal exchanged montmorillonite performance: an XRD profile modeling approach,” Appl. Surf. Sci. 261, 396404.
Oueslati, W., Ammar, M., and Chorfi, N. (2015). “Quantitative XRD analysis of the structural changes of Ba-Exchanged Montmorillonite: effect of an in situ hydrous perturbation,” Minerals 5, 507526.
Sakharov, B. A., Lindgreen, H., Salyn, A., and Drits, V. A. (1999). “Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting,” Clays Clay Miner. 47, 555566.
Saravanan, S., Ramamurthy, P. C., and Madras, G. (2015). “Effects of temperature and clay content on water absorption characteristics of modified MMT clay/cyclic olefin copolymer nanocomposite films: permeability, dynamic mechanical properties and the encapsulated organic device performance,” Comp. B: Eng. 73, 19.
Sato, T., Watanabe, T., and Otsuka, R. (1992). “Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites,” Clays Clay Miner. 40, 103113.
Schäfer, T., Claret, F., Bauer, A., Griffault, L., Ferrage, E., and Lanson, B. (2003). “Natural organic matter (NOM)-clay association and impact on Callovo-Oxfordian clay stability in high alkaline solution: spectromicroscopic evidence,” J. Phys. IV 104, 413416.
Segad, M., Jönsson, B. O., Åkesson, T., and Cabane, B. (2010). “Ca/Na Montmorillonite: structure, forces and swelling properties,” Langmuir 26(8), 57825790.
Tanaka, H., Shiwakoti, D. R., Mishima, O., Watabe, Y., and Tanaka, M. (2001). “Comparison of mechanical behavior of two overconsolidated clays: yamashita and Louiseville clays,” Soils Found. 41(4), 7388.
Tanaka, H., Tsutsumi, A., and Ohashi, T. (2014). “Unloading behavior of clays measured by CRS test,” Soils Found. 54(2), 8193.
Tertre, E., Delville, A., Prêta, D., Hubert, F., and Ferrage, E. (2015). “Cation diffusion in the interlayer space of swelling clay minerals – a combined macroscopic and microscopic study,” Geochim. Cosmochim. Acta 149, 251267.
Tessier, D. and Pedro, G. (1987). “Mineralogical characterization of 2:1 clays in soils: importance of the clay texture,” Proc. Int. Clay Conf. Denver, 7884.
Thakur, V. K. S. and Singh, D. N. (2005). “Rapid Determination of Swelling Pressure of Clay Minerals,” J. Test. Eval. 33(4), Paper ID JTE11866, 239245.
Tournassat, C., Neaman, A., Villiéras, F., Bosbach, D., and Charlet, L. (2003). “Nanomorphology of montmorillonite particles: estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations,” Am. Mineral. 88(11–12), 19891995.
Van Olphen, H. (1965). “Thermodynamics of interlayer adsorption of water in clays,” J. Colloid Sci. 20, 822837.
Vaughan, M. T. and Guggenheim, S. (1986). “Elasticity of muscovite and its relationship to crystal structure,” J. Geophys. Res. 91(B5), 46574664.
Viani, A., Gualtieri, A. F., and Artioli, G. (2002). “The nature of disorder in montmorillonite by simulation of X-ray powder patterns,” Am. Mineral. 87, 966975.
Wang, Y., Wang, Y., and Wang, E. D. (2001). “A study on characteristics of modified montmorillonite,” Acta Petrologica et Mineralogia. 20, 565567.
Zeng, L-L., Hong, -S., Wang, C., and Yang, Z-Z. (2016). “Experimental study on physical properties of clays with organic matter soluble and insoluble in water,” Appl. Clay Sci. 132–133, 660667.
Zheng, L., Rutqvist, J., Birkholzer, J. T., and Liu, H-H. (2015). “On the impact of temperatures up to 200 °C in clay repositories with bentonite engineer barrier systems: a study with coupled thermal, hydrological, chemical, and mechanical modeling,” Eng. Geol. 197, 278295.
Zivica, V. and Palou, M. T. (2015). “Physico-chemical characterization of thermally treated bentonite,” Comp. Part B: Eng. 68, 436445.


Effect of mechanical constraint on the hydration properties of Na-montmorillonite: study under extreme relative humidity conditions

  • Walid Oueslati (a1), Nejmeddine Chorfi (a2) and Mohamed Abdelwahed (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed