Skip to main content Accessibility help
×
Home

Dual detection X-ray fluorescence cryotomography and mapping on the model organism Daphnia magna

  • B. De Samber (a1), S. Vanblaere (a2), R. Evens (a2), K. De Schamphelaere (a2), G. Wellenreuther (a3), F. Ridoutt (a3), G. Silversmit (a1), T. Schoonjans (a1), B. Vekemans (a1), B. Masschaele (a4), L. Van Hoorebeke (a4), K. Rickers (a3), G. Falkenberg (a3), I. Szaloki, C. Janssen (a2) and L. Vincze (a1)...

Abstract

Micro-X-ray fluorescence (μ-XRF) is a rapidly evolving analytical technique which allows visualising the trace level metal distributions within a specimen in an essentially nondestructive manner. At second generation synchrotron radiation sources, detection limits at the sub-parts per million level can be obtained with micrometer resolution, while at third generation sources the spatial resolution can be better than 100 nm. Consequently, the analysis of metals within biological systems using micro- and nano-X-ray fluorescence imaging is a quickly developing field of research. Since X-ray fluorescence is a scanning technique, the elemental distribution within the sample should not change during analysis. Biological samples pose challenges in this context due to their high water content. A dehydration procedure is commonly used for sample preparation enabling an analysis of the sample under ambient temperature conditions. Unfortunately, a potential change in elemental redistribution during the sample preparation is difficult to verify experimentally and therefore cannot be excluded completely. Creating a cryogenic sample environment allowing an analysis of the sample under cryogenic condition is an attractive alternative but not available on a routine basis. In this article, we make a comparison between the elemental distributions obtained by micro-SR-XRF within a chemically fixed and a cryogenically frozen Daphnia magna, a model organism to study the environmental impact of metals. In what follows, we explore the potential of a dual detector setup for investigating a full ecotoxicological experiment. Next to conventional 2D analysis, dual detector X-ray fluorescence cryotomography is illustrated and the potential of its coupling with laboratory absorption micro-CT for investigating the tissue-specific elemental distributions within this model organism is highlighted.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail: Bjorn.DeSamber@Ugent.be

References

Hide All
Balcaen, L., De Schamphelaere, K., Janssen, C., Moens, L., and Vanhaecke, F. (2008). “Development of a method for assessing the relative contribution of waterborne and dietary exposure to zinc bioaccumulation in Daphnia magna by using isotopically enriched tracers and ICP-MS detection,” Anal. Bioanal. Chem. ABCNBP 390, 555569.10.1007/s00216-007-1620-5
De Samber, B., Evens, R., De Schamphelaere, K., Silversmit, G., Masschaele, B., Schoonjans, T., Vekemans, B., Janssen, C., Van Hoorebeke, L., Szaloki, I., Vanhaecke, F., Falkenberg, G., and Vincze, L. (2008). “A combination of synchrotron and laboratory X-ray techniques for studying tissue-specific trace level metal distributions in Daphnia magna,” J. Anal. At. Spectrom. JASPE2 23, 829839.10.1039/b800343m
De Samber, B., Silversmit, G., De Schamphelaere, K., Evens, R., Schoonjans, T., Vekemans, B., Janssen, C., Masschaele, B., Van Hoorebeke, L., Szaloki, I., Vanhaecke, F., Rickers, K., Falkenberg, G., and Vincze, L. (2010). “Element-to-tissue correlation in biological samples determined by three-dimensional X-ray imaging methods,” J. Anal. At. Spectrom. JASPE2 25, 544553.10.1039/b918624g
Falkenberg, G., Clauss, O., Swiderski, A., and Tschentscher, T. (2001). “Optics for the X-ray fluorescence beamline at HASYLAB,” Nucl. Instrum. Methods Phys. Res. A NIMAER 467, 737740.10.1016/S0168-9002(01)00483-1
Falkenberg, G., Kracht, T., and Küchbacher, M. (2005). “Fast X-ray fluorescence imaging in continuous scanning mode at beamline L,” Hasylab Annual Report 1, 91-95.
Falkenberg, G., Rickers, K., Bilderback, D., and Huang, R. (2003). “A single bounce capillary for focusing of hard X-rays,” Hasylab Annual Report, www.hasylab.de.
Gholap, D., Izmer, A., De Samber, B., van Elteren, J., Selih, V., Evens, R., De Schamphelaere, K., Janssen, C., Balcaen, L., Lindemann, I., Vincze, L., and Vanhaecke, F. (2010). “Comparison of laser ablation-inductively coupled plasma-mass spectrometry and micro-X-ray fluorescence spectrometry for elemental imaging in Daphnia magna,” Anal. Chim. Acta ACACAM 664, 1926.10.1016/j.aca.2010.01.052
Heijerick, D., De Schamphelaere, K., Van Sprang, P., and Janssen, C. (2005). “Development of a chronic zinc biotic ligand model for Daphnia magna,” Ecotoxicol. Environ. Saf. EESADV 62, 110.10.1016/j.ecoenv.2005.03.020
Kanngießer, B., Malzer, W., Pagels, M., Lühl, L., and Weseloh, G. (2007). “Three-dimensional micro-XRF under cryogenic conditions: A pilot experiment for spatially resolved trace analysis in biological specimens,” Anal. Bioanal. Chem. ABCNBP 389, 11711176.10.1007/s00216-007-1494-6
Laforsch, C. and Tollrian, R. (2000). “A new preparation technique of daphnids for scanning electron microscopy using hexamethyldisilazane,” Archiv Hydrobiol. AHYBA4 149, 587596.
Muyssen, B., De Schamphelaere, K., and Janssen, C. (2006). “Mechanisms of chronic waterborne Zn toxicity in Daphnia magna,” Aquat. Toxicol. 77, 393401.10.1016/j.aquatox.2006.01.006
Vekemans, B., Janssens, K., Vincze, L., Adams, F., and Van Espen, P. (1994). “Analysis of X-ray spectra by iterative least-squares (AXIL)—New developments,” X-Ray Spectrom. XRSPAX 23, 278285.10.1002/xrs.1300230609
Vekemans, B., Janssens, K., Vincze, L., Aerts, A., Adams, F., and Hertogen, J. (1997). “Automated segmentation of μ-XRF image sets,” X-Ray Spectrom. XRSPAX 26, 333346.10.1002/(SICI)1097-4539(199711/12)26:6<333::AID-XRS231>3.0.CO;2-D

Keywords

Related content

Powered by UNSILO

Dual detection X-ray fluorescence cryotomography and mapping on the model organism Daphnia magna

  • B. De Samber (a1), S. Vanblaere (a2), R. Evens (a2), K. De Schamphelaere (a2), G. Wellenreuther (a3), F. Ridoutt (a3), G. Silversmit (a1), T. Schoonjans (a1), B. Vekemans (a1), B. Masschaele (a4), L. Van Hoorebeke (a4), K. Rickers (a3), G. Falkenberg (a3), I. Szaloki, C. Janssen (a2) and L. Vincze (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.