Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T07:27:39.875Z Has data issue: false hasContentIssue false

Diffraction line broadening from nanocrystals under large hydrostatic pressures

Published online by Cambridge University Press:  14 November 2013

Michael Burgess
Affiliation:
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy Materials Science and Engineering, Georgia Institute of Technology, Atlanta, USA
Alberto Leonardi
Affiliation:
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
Matteo Leoni
Affiliation:
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
Paolo Scardi
Affiliation:
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy

Abstract

Atomistic copper nanocrystals were investigated via Molecular Dynamics (MD) under hydrostatic pressure to probe the relationship between applied load and structure deformation. The corresponding X-ray powder diffraction patterns were generated from the atomic coordinates. The analysis followed both the traditional Williamson-Hall approach based on pseudo-Voigt fitting and an alternative, more accurate method able to derive the integral breadths without applying a fitting. The Williamson-Hall results show discrepancies not fully associated with an issue of fitting.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackland, G. J. and Jones, A. P. (2006). “Applications of local crystal structure measures in experiment and simulation,” Phys. Rev. B: Condens. Matter Mater. Phys.73, 054104.CrossRefGoogle Scholar
Beyerlein, K. R., Snyder, R. L. and Scardi, P. (2011). “Powder diffraction line profiles from the size and shape of nanocrystallites,” J. Appl. Crystallogr. 44, 945953.Google Scholar
Brandstetter, S., Derlet, P. M., Van Petegem, S. and Van Swygenhoven, H. (2008). “Williamson-Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations,” Acta Mater. 56, 165176.Google Scholar
Chen, B., Penwell, D., Kruger, M. B.,Yue, A. F. and Fultz, B. (2001) “Nanocrystalline iron at high pressure,” J. Appl. Phys. 89, 4794–96.Google Scholar
Debye, P. (1915). “Zerstreuung von Röntgenstrahlen,” Ann. Phys. (Berlin, Ger.) 351, 809823.Google Scholar
Derlet, P. M., Van Petegem, S. and Van Swygenhoven, H. (2005). “Calculation of x-ray spectra for nanocrystalline materials,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 024114.CrossRefGoogle Scholar
Dong, Y. H. and Scardi, P. (2000). “MarqX: a new program for whole-powder-pattern fitting,” J. Appl. Crystallogr. 33, 184189.Google Scholar
Foiles, S. M., Baskes, M. I. and Daw, M. S. (1986). “Embedded-atom-methodfunctionsforthe FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B: Condens. Matter Mater. Phys. 33, 79837991.Google Scholar
Grünwald, M., and Dellago, C. (2006). “Ideal gas pressure bath: a method for applying hydrostatic pressure in the computer simulation of nanoparticles,” Mol. Phys. 104, 37093715.Google Scholar
Gu, Q., Krauss, G., Steurer, W., Gramm, F. and Cervellino, A. (2008). “Unexpected high stiffness of Ag and Au nanoparticles,” Phys. Rev. Lett. 100, 045502.CrossRefGoogle ScholarPubMed
Gullett, P. M., Horstemeyer, M. F.,Baskes, M. I. and Fang, H. (2008).“A deformation gradient tensor and strain tensors for atomistic simulations,” Modell. Simul. Mater. Sci. Eng. 16, 015001.CrossRefGoogle Scholar
Guo, Y.-B., Xu, T. and Li, M. (2012) “Atomistic calculation of internal stress in nanoscale polycrystalline materials,” Phil. Mag. 92(24), 30643083.CrossRefGoogle Scholar
Hosnaoui, A., Van Swygenhoven, H. and Derlet, P. M. (2002). “Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 184112.Google Scholar
Leonardi, A., Beyerlein, K. R., Xu, T., Li, M., Leoni, M., Scardi, P. (2011). “Microstrain in nanocrystalline samples from atomistic simulation,” Z. Kristallogr. Proc. 1, 3742.Google Scholar
Leonardi, A., Leoni, M. and Scardi, P. (2012). “Atomistic interpretation of microstrain in diffraction line profile analysis,” Thin Solid Films 530, 4043 CrossRefGoogle Scholar
Leonardi, A., Leoni, M. and Scardi, P. (2013). “Directional Pair Distribution Function for Diffraction Line Profile Analysis of Atomistic Models,” J. Appl. Crystallogr. 46(1), 6375.Google Scholar
Lv, J., Bai, M.,Cui, W. and Li, X. (2011). “The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles system,” Nanoscale Res. Lett. 6, 200.Google Scholar
Palosz, B., Stel'makh, S., Grzanka, E., Gierlotka, S., Pielaszek, R., Bismayer, U., Werner, S. and Palosz, W. (2004). “High pressure x-ray diffraction studies on nanocrystalline materials,” J. Phys.: Condens. Matter 16, S353S377.Google Scholar
Plimpton, S. (1995). “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys., 117, 119.Google Scholar
Scardi, P. and Leoni, M. (2001). “Diffraction line profiles from polydisperse crystalline systems,” Acta Crystallogr., Sect. A: Found. Crystallogr. 57, 604613.Google Scholar
Scardi, P., Leoni, M. and Delhez, R. (2004). “Line broadening analysis using integral breadth methods: a critical review,” J. Appl. Crystallogr. 37, 381390.Google Scholar
Stokes, A. R. and Wilson, A. J. C. (1944). “The diffraction of X rays by distorted crystal aggregates – I,” Proc. Phys. Soc., London 56, 174–82.Google Scholar
Stukowski, A., Markmann, J., Weissmuller, J. and Albe, K. (2009). “Atomistic origin of microstrain broadening in diffraction data of nanocrystalline solids,” Acta Mater. 57(5), 16481654.Google Scholar
Williamson, G. K. and Hall, W. H. (1953). “X-ray line broadening from filed aluminium and wolfram,” Acta Metall. 1, 2231.CrossRefGoogle Scholar
Zhang, J., Zhao, Y. and Palosz, B., (2007). “Comparative studies of compressibility between nanocrystalline and bulk Nickel,” Appl. Phys. Lett. 90, 043112.Google Scholar