Skip to main content Accessibility help
×
Home

Crystal structure of hydroxyzine dihydrochloride, C21H29ClN2O2Cl2

  • Jordan A. Krueger (a1), James A. Kaduk (a1) (a2), Amy M. Gindhart (a3) and Thomas N. Blanton (a3)

Abstract

The crystal structure of hydroxyzine dihydrochloride has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Hydroxyzine dihydrochloride crystallizes in space group P21 (#4) with a = 11.48735(10), b = 7.41792(7), c = 14.99234(15) Å, β = 110.4383(10)°, V = 1197.107(13) Å3, and Z = 2. The hydroxyl-containing side chain of the cation is disordered over two conformations, with ~70/30% occupancy. The crystal structure consists of alternating polar (which includes the cation-anion interactions and hydrogen bonds) and nonpolar layers parallel to the ab-plane. The crystal structure is dominated by hydrogen bonds. Each of the protonated nitrogen atoms forms a very strong hydrogen bond to one of the chloride anions. The hydroxyl group forms a strong hydrogen bond to one of the chloride anions in both conformations, and there are subtle differences in the hydrogen bonding patterns between the conformations. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1603.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

References

Hide All
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.
Dassault Systèmes (2016). Materials Studio 2017R2 (BIOVIA, San Diego CA).
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.
Favre-Nicolin, V. and Černý, R. (2002). “FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction File™,” Powder Diffr. 32(2), 6371.
Ferreri, M. and Hantouche, E. G. (1998). “Recent clinical trials of hydroxyzine in generalized anxiety disorder,” Acta Psychiatr. Scand. 393, 102108.
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys. 101, 1068610696.
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.
Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S., and Ramesha, A. R. (2010). “Levocetirizinium dipicrate,” Acta Crystallographica Section E: Structure Reports Online 66(12), o3167o3167.
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.
Kresse, G. and Furthmüller, J. (1996). “Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS), (Los Alamos National Laboratory Report LAUR 86-784).
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15(5), 427432.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.
Majumder, J., Deb, J., Husain, A., Jana, S. S., and Dastidar, P. (2015). “Cetirizine derived supramolecular topical gel in action: rational design, characterization and in vivo self-delivery application in treating skin allergy in mice,” J. Mater. Chem. B. 3, 66346644.
Martindale, W. and Reynolds, J. E. F. (1993) Martindale: The Extra Pharmacopoeia (The Pharmaceutical Press, London), 30th ed.
MDI (2017). Jade 9.8 (Materials Data. Inc., Livermore CA).
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-Zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem UT).
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20(2), 7983.
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.
Tsau, J. and DeAngelis, N. (1978). “Hydroxyzine Dihydrochloride,” Anal. Profiles Drug Subst. 7, 319341.
Tsau, J. and DeAngelis, N. (1981). “Hydroxyzine dihydrochloride,” PDF entry 00-031-1731.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia); http://hirshfeldsurface.net.
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Cryst. Sect. B: Struct. Sci., Cryst. Eng. Mater., 70(6), 10201032.
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Inst. 79, 085105.
Wavefunction, Inc. (2017). Spartan ‘16 Version 2.0.1, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine CA 92612.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Krueger et al. supplementary material
Krueger et al. supplementary material 1

 Unknown (352 KB)
352 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed