Skip to main content Accessibility help

Crystal structure of choline fenofibrate (Trilipix®), (C5H14NO) (C17H14ClO4)

  • James A. Kaduk (a1), Kai Zhong (a2), Amy M. Gindhart (a2) and Thomas N. Blanton (a2)


The crystal structure of choline fenofibrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Choline fenofibrate crystallizes in space group Pbca (#61) with a = 12.341 03(2), b = 28.568 70(6), c = 12.025 62(2) Å, V = 4239.84(1) Å3, and Z = 8. The hydroxyl group of the choline anion makes a strong hydrogen bond to the ionized carboxylate group of the fenofibrate anion. Together with C–H···O hydrogen bonds, these link the cations and anions into layers parallel to the ac-plane. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.


Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail:


Hide All
Accelrys (2013). Materials Studio 7.0 (Accelrys Software Inc., San Diego, CA).
Apra, E., Causa, M., Prencipe, M., Dovesi, R., and Saunders, V. R. (1993). “On the structural properties of NaCl. An ab initio study of the B1-B2 phase transition,” J. Phys. Condens. Matter 5, 29692976.
Balendiran, G. K., Rath, N., Kotheimer, A., Miller, C., Zeller, M., and Rath, N. P. (2012). “Biomolecular chemistry of isopropyl fibrates,” J. Pharm. Sci. 101, 15551569.
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Engl. 34(15), 15551573.
Bordawekar, S., Kuvadia, Z., Dandekar, P., Mukherjee, S., and Doherty, M. (2014). “Interesting morphological behavior of organic salt cholilne fenofibrate: effect of supersaturation and polymeric impurity,” Crystal Growth Des. 14, 38003812.
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.
Clink, R. D., Paterson, J. B., Gao, Y., Zhang, G. G. Z., Long, M. A., Morris, J. B., and Rosenberg, J. (2007). “Salts of Fenofibric Acid and Pharmaceutical Formulations Thereof,” US Patent 7.259,186 B2.
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Amer. Mineral. 22, 446467.
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R., and Zicovich-Wilson, C. M. (2005). “CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals,” Z. Kristallogr. 220, 571573.
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23(4), 120126.
Favre-Nicolin, V. and Černý, R. (2002). “FOX, Free Objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.
Groom, C. R. and Allen, F. H. (2014). “The Cambridge structural database in retrospect and prospect,” Angew. Chem. Int. Ed. Engl. 53, 662671.
Henry, R. F., Zhang, G. Z., Gao, Y., and Buckner, I. S. (2003). “Fenofibrate,” Acta Crystallogr. E: Struct. Rep. Online 59, 0699–o700.
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.
ICDD (2014). PDF-4+ 2014 (Database), International Centre for Diffraction Data, edited by Dr. Soorya Kabekkodu (Newtown Square, PA, USA).
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS) (Los Alamos National Laboratory Report LAUR 86-784).
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchron. Radiat. 15(5), 427432.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.
MDI (2014). Jade 9.5 (Materials Data. Inc., Livermore, CA).
McKinnon, J. J., Spackman, M. A., and Mitchell, A. S. (2004). “Novel tools for visualizing and exploring intermolecular interactions in molecular crystals,” Acta Crystallogr. B 60, 627668.
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T. and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Chem. Inf. 3, 33. doi: 10.1186/1758-2946-3-33.
Ponnaiah, R., Desai, S., Rathod, D., Katariya, L., Bhimani, N., and Modi, V. (2011). “Process for the Preparation of Choline Salt of Fenofibric Acid and Its Novel Polymorph,” US Patent 2011/0288331 A1.
Rath, N. P., Haq, W., and Balendiran, G. K. (2005). “Fenofibric acid,” Acta Crystallogr. E: Struct. Rep. Online 61, o81o84.
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. B: Struct. Sci. 56(3), 455465.
Spackman, M. A. and Jayatilaka, D. (2009). “Hirshfeld surface analysis,” CrystEngComm 11, 1932.
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3 ,” J. Appl. Crystallogr. 20(2), 7983.
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B: Struct. Sci., Cryst. Eng. Mater. 70(6), 10201032.
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.
Wavefunction, Inc. (2013). Spartan '14 version 1.1.0, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine CA 92612.
Wolff, S. K., Grimwood, D. J., McKinnon, M. J., Turner, M. J., Jayatilaka, D., and Spackman, M. A. (2012). CrystalExplorer version 3.1 (University of Western Australia).
Yang, Z. and Wang, Z. (2012). “Ethyl 2-[4-(4-chlorobenzoyl) phenoxy]-2-methylpropanoate,” Acta Crystallogr. E: Struct. Rep. Online 68, 01750.
Zou, B., Fang, Z., Zhong, H., Guo, K., and Wei, P. (2012). “Methyl 2-[4-(4-chlorobenzoyl) phenoxy]-2-methylpropanoate,” Acta Crystallogr. E: Struct. Rep. Online 68, o1676o1676.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Kaduk supplementary material
Kaduk supplementary material 1

 Unknown (2.8 MB)
2.8 MB
Supplementary materials

Kaduk supplementary material
Kaduk supplementary material 2

 Unknown (8 KB)
8 KB

Crystal structure of choline fenofibrate (Trilipix®), (C5H14NO) (C17H14ClO4)

  • James A. Kaduk (a1), Kai Zhong (a2), Amy M. Gindhart (a2) and Thomas N. Blanton (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.