Skip to main content Accessibility help
×
Home

Crystal structure of bisoprolol fumarate Form I, (C18H32NO4) (C4H2O4)0.5

  • James A. Kaduk (a1) (a2), Amy M. Gindhart (a3) and Thomas N. Blanton (a3)

Abstract

The crystal structure of bisoprolol fumarate Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Bisoprolol fumarate Form I crystallizes in space group P-1 (#2) with a = 8.165 70(5) Å, b = 8.516 39(12) Å, c = 16.751 79(18) Å, α = 89.142(1)°, β = 78.155(1)°, γ = 81.763(1)°, V = 1128.265(10) Å3, and Z = 2. The neutral side chain of the bisoprolol cation is probably disordered. The cation and anion are linked by N–H⋯O and O–H⋯O hydrogen bonds. The cations are also linked by N–H⋯O hydrogen bonds. The result is alternating layers of hydrophilic and hydrophobic layers parallel to the ab-plane. The density of the structure is relatively low at 1.130 g cm−3, but there are no obvious voids in the structure. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1625.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

References

Hide All
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Engl. 34(15), 15551573.
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.
Dassault Systèmes (2017). Materials Studio 2018 (BIOVIA, San Diego, CA).
Detrich, A., Dömötör, K. J., Kagtona, M. T., Markovits, I., and Láng, J. V. (2018). “Polymorphic forms of bisoprolol fumarate,” J. Therm. Anal. Calorim. 135, 30433055.
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114(19), 12871317.
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23(4), 120126.
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction File™,” Powder Diffr. 32(2), 6371.
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys. 101, 1068610696.
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.
Kresse, G. and Furthmüller, J. (1996). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.
Larson, A. C. and Von Dreele, R. B. (2004). "General Structure Analysis System (GSAS)," Los Alamos National Laboratory Technical Report LAUR 86–784.
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15(5), 427432.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire, NM).
MDI (2017). Jade 9.8 (Materials Data. Inc., Livermore, CA).
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Chem. Inform. 3, 33.
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 74, 239252.
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. Sec. B: Struct. Sci. 56(3), 455465.
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT).
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20(2), 7983.
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.
van de Streek, J. and Neumann, M. A. (2014). ““Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 70(6), 10201032.
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Inst. 79, 085105.
Wang, Y., Li, X., Lu, T., Peng, Y., and Fan, Y. (2016). “Bisoprolol fumarate I crystal form and preparation method thereof,” Chinese Patent Application CN 10634909.
Wavefunction, Inc. (2017). Spartan ‘16 Version 2.0.1 (Wavefunction Inc., Irvine, CA).
Wheatley, A. M. and Kaduk, J. A. (2018). “Crystal structures of ammonium citrates,” Powder Diffr. 34, 3543.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Kaduk et al. supplementary material
Kaduk et al. supplementary material 1

 Unknown (3 KB)
3 KB
UNKNOWN
Supplementary materials

Kaduk et al. supplementary material
Kaduk et al. supplementary material 2

 Unknown (2.7 MB)
2.7 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed