Skip to main content Accessibility help

Crystal structure and X-ray absorption spectroscopy of trimethylarsine oxide dihydrate, (CH3)3AsO⋅2H2O

  • Joel W. Reid (a1), James A. Kaduk (a2) and Peter E. R. Blanchard (a1)


The crystal structure of trimethylarsine oxide dihydrate, (CH3)3AsO⋅2H2O, (TMAO dihydrate) has been solved using parallel tempering with the FOX software package and refined using synchrotron powder diffraction data obtained from beamline 08B1-1 at the Canadian Light Source. Rietveld refinement, performed with the software package GSASII, yielded orthorhombic lattice parameters of a = 13.3937(4) Å, b = 9.53025(30) Å, and c = 11.5951(3) Å (Z = 8, space group Pbca). The Rietveld refined structure was compared with density functional theory calculations performed with VASP and shows reasonable agreement. Arsenic K-edge X-ray absorption spectroscopy analysis also revealed additional information on the electronic structure of the arsenic atom within the TMAO dihydrate structure.


Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail:


Hide All
Agency for Toxic Substances and Disease Registry, ATSDR (2020). Priority list of hazardous substances. Available at:
Boultif, A. and Louer, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci. 44, 21332144.
Bunker, G. (2010). Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy (Cambridge Press, New York).
Capitani, E. M. D. (2011). “Arsenic toxicology – a review,” in Arsenic: Natural and Anthropogenic, edited by Deschamps, F. and Matschullat, J. (CRC Press, London), pp. 2737.
Chen, W. Q., Shi, Y. L., Wu, S. L., and Zhu, Y. G. (2016). “Anthropogenic arsenic cycles: a research framework and features,” J. Cleaner Production 139, 328336.
Cullen, W. R. and Reimer, K. J. (1989). “Arsenic speciation in the environment,” Chem. Rev. 89, 713764.
Cullen, W. R., Liu, Q., Lu, X., McKnight-Whitford, A., Peng, H., Popowich, A., Yan, X., Zhang, Q., Fricke, M., Sun, H., and Le, X. C. (2016). “Methylated and thiolated arsenic species for environmental and health research – a review on synthesis and characterization,” J. Environ. Sci. 49, 727.
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noel, Y., Causa, M., Rerat, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quant. Chem. 114, 12871313.
Favre-Nicolin, V., and Černý, R. (2002). “FOX, ‘Free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.
Fodje, M., Grochulski, P., Janzen, K., Labiuk, S., Gorin, J., and Berg, R. (2014). “08B1-1: an automated beamline for macromolecular crystallography experiments at the Canadian Light Source,” J. Synchrotron Rad. 21, 633637.
Foust, R. D. Jr., Bauer, A. M., Costanza-Robinson, M., Blinn, D. W., Prince, R. C., Pickering, I. J., and George, G. N. (2016). “Arsenic transfer and biotransformation in a fully characterized freshwater food web,” Coord. Chem. Rev. 306, 558565.
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.
George, G. R., Prince, R. C., Singh, S. P., and Pickering, I. J. (2009). “Arsenic K-edge X-ray absorption spectroscopy of arsenic in seafood,” Mol. Nutr. Food Res. 53, 552557.
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., and Hutchison, G. R. (2012). “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J. Cheminform. 4, 17.
Hunter, D. A., Goessler, W., and Francesconi, K. A. (1998). “Uptake of arsenate, trimethylarsine oxide, and arsenobetaine by the shrimp Crangon crangon,” Mar. Biol. 131, 543552.
Jiang, D. T., Chen, N., Zhang, L., Malgorzata, G., Wright, G., Igarashi, R., Beauregard, D., Kirkham, M., and McKibben, M. (2007). “XAFS at canadian light source,” AIP Conf. Proc. 882, 893895.
Koch, I., McPherson, K., Smith, P., Easton, L., Doe, K. G., and Reimer, K. J. (2007). “Arsenic bioaccessibility and speciation in clams and seaweed from a contaminated marine environment,” Mar. Pollut. Bull. 54, 586594.
Kresse, G. and Furthmüller, J. (1996). “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169.
Laugier, J. and Bochu, B. (2000). “LMGP-Suite Suite of Programs for the interpretation of X-ray Experiments,” ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. Available at: and
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriquez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire, NM).
Matschullat, J. (2011). “The global arsenic cycle revisited,” in Arsenic: Natural and Anthropogenic, edited by Deschamps, F. and Matschullat, J. (CRC Press, London), pp. 326.
Momma, K. and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.
Newville, M. (2004). Fundamentals of XAFS (University of Chicago, Chicago), 1.7 ed.
Ng, Y. S., Rodley, G. A., and Robinson, W. T. (1977). “Tri-μ-(trimethylarsine oxide)-hexakis(trimethylarsine oxide)dicalcium(II) tetraperchlorate – a dinuclear calcium complex,” Acta Crystallogr. B 33, 931934.
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Cheminform. 3, 33.
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.
Pickett, A. W., McBride, B. C., and Cullen, W. C. (1988). “Metabolism of trimethylarsine,” Appl. Organomet. Chem. 2, 479482.
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Crystallogr. B 74, 239252.
Ravel, B. and Newville, M. (2005). “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT,” J. Synchrotron Rad. 12, 537541.
Rehy, L. and Albers, R. (1990). “Scattering-matrix formulation of curved-wave multiple-scattering theory: application to X-ray-absorption fine structure,” Phys. Rev. B 41, 81398149.
Savage, L., Carey, M., Hossain, M., Rafiqul Islam, M., Mangala, P., de Silva, C. S., Williams, P. N., and Meharg, A. A. (2017). “Elevated trimethylarsine oxide and inorganic arsenic in northern hemisphere summer monsoonal wet deposition,” Environ. Sci. Technol. 51, 1221012218.
Smith, P. G., Kock, I., Gordon, R. A., Mandoli, D. F., Chapman, B. D., and Reimer, K. J. (2005). “X-ray absorption near-edge structure analysis of arsenic species for application to biological environmental samples,” Environ. Sci. Technol. 39, 248254.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from A1203,”,” J. Appl. Crystallogr. 20, 7983.
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open-source all-purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.
Van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion corrected density functional theory (DFT-D),” Acta Crystallogr. B 70, 10201032.


Related content

Powered by UNSILO

Crystal structure and X-ray absorption spectroscopy of trimethylarsine oxide dihydrate, (CH3)3AsO⋅2H2O

  • Joel W. Reid (a1), James A. Kaduk (a2) and Peter E. R. Blanchard (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.