Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T01:51:11.064Z Has data issue: false hasContentIssue false

Crystal structure and powder diffraction reference pattern of type I clathrate Ba8Ni4Ge42

Published online by Cambridge University Press:  03 April 2012

W. Wong-Ng*
Affiliation:
National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899
Q. Huang
Affiliation:
National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899
I. Levin
Affiliation:
National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899
J. C. Woicik
Affiliation:
National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899
X. Shi
Affiliation:
Materials and Processes Laboratory, General Motors R&D Center, Warren, Michigan 48090
Jihui Yang
Affiliation:
Materials and Processes Laboratory, General Motors R&D Center, Warren, Michigan 48090
J. A. Kaduk
Affiliation:
Poly Crystallography, Inc., Naperville, Illinois 60540-5407
*
a)Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

Abstract

The crystal structure of type I clathrate Ba8Ni4Ge42 has been determined using neutron powder diffraction, transmission electron microscopy (TEM, for possible superlattice), and extended X-ray absorption fine structure (EXAFS) measurements. Ba8Ni4Ge42 is cubic with the space group Pmn and unit-cell parameter a = 10.6769(2) Å (Dx = 5.988 g cm−3). The structure combines two different types of polyhedra: the dodecahedron (Ge20, 20-atom cage with 12 pentagonal faces) and the tetrakaidecahedron (Ge24, 24-atom cage with 12 pentagonal and 2 hexagonal faces). Each unit cell contains two Ge20 dodecahedra and six Ge24 tetrakaidecahedra. The Ge20 dodecahedra are linked via the interstitial 6c positions. The framework structure is formed by a tetrahedrally bounded network of Ge atoms, whereas Ba atoms reside inside the Ge20 and Ge24 cavities at the 2a and 6d crystallographic positions, respectively. Ni atoms exclusively occupy the 6c positions located on the hexagonal faces of the larger tetrakaidecahedra; no Ni atoms are found in the smaller dodecahedra that consist of pentagonal faces. A local structure study using EXAFS supports the coexistence of Ge and Ni on the 6c site. Electron diffraction in TEM reveals no detectable Ge/Ni ordering.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beekman, M., Wong-Ng, W., Kaduk, J.A., Shapiro, A., and Nolas, G. S. (2007). “Synthesis and single-crystal X-ray diffraction studies of new framework substituted type II clathrates, Cs8Na16AgxGe136−x (x < 7),” J. Solid State Chem. 180, 10761082.CrossRefGoogle Scholar
Beekman, M., Kaduk, J. A., Gryko, J., Wong-Ng, W., Shapiro, A., and Nolas, G. S. (2009). “Synthesis and transport properties of framework-substituted Cs8Na16Cu5Ge131,” J. Alloys Compd. 470, 365368.CrossRefGoogle Scholar
Bobev, S. and Sevov, S. C. (1999). “Synthesis and characterization of stable stoichiometric clathrates of silicon and germanium: Cs8Na16Si136 and Cs8Na16Ge136,” J. Am. Chem. Soc. 121, 37953796.CrossRefGoogle Scholar
Bobev, S. and Sevov, S. C. (2000). “Clathrates of group 14 with alkali metals: an exploration,” J. Solid State Chem. 153, 92105.CrossRefGoogle Scholar
Chakoumakos, B. C., Sales, B. C., Mandrus, D. G., and Nolas, G. S. (2000). “Structural disorder and thermal conductivity of the semiconducting clathrate Sr8Ga16Ge30,” J. Alloys Compd. 296, 8086.CrossRefGoogle Scholar
Christensen, M., Juuranyi, F., and Iversen, B. B. (2006). “The rattler effect in thermoelectric clathrates studied by inelastic neutron scattering,” Physica B 385, 505507.CrossRefGoogle Scholar
Christensen, M., Johnson, S., and Iversen, B. B. (2010). “Thermoelectric clathrates of type I,” Dalton Trans 39, 978992.CrossRefGoogle ScholarPubMed
Cordier, G. and Woll, P. (1991). “Neue ternae intermetallische Verbinddungen mit Clathratstruktur Ba8(T,Si)6Si40 and Ba6(T,Ge)6Ge40 mit T = Ni, Pd, Pt, Cu, Ag, Au,” J. Less Common Metals 169, 291302.CrossRefGoogle Scholar
Czybulka, A., Kuhl, B., and Schuster, H.-U. (1991). “Neue ternäre, Käfigverbindungen in den Systemen Barium-2B(3B)-Element-Germanium,” Z. Anorg. Allg. Chem. 594, 2328.CrossRefGoogle Scholar
Deng, S.-K., Tang, X. F., and Tang, R. S. (2009). “Synthesis and high temperature thermoelectric transport properties of S-based type-I clathrates,” Chin. Phys. Soc. 18(07), 30843089.Google Scholar
Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J. P., and Gogna, P. (2007). “New directions for low-dimensional thermoelectric materials,” Adv. Mater. 19, 10431053.CrossRefGoogle Scholar
Gatti, C., Bertini, L., Blake, N. P., and Iversen, B. B. (2003). “Guest-framework interaction in type I inorganic clathrates with promising thermoelectric properties: on the ionic versus neutral nature of the alkaline-earth metal guest A in A 8Ga16Ge30 (A = Sr, Ba),” Chem. Eur. J. 9(18), 45564568.CrossRefGoogle Scholar
Ghamaty, S. and Eisner, N. B. (2005). “Quantum well thermoelectric devices,” Proceeding of Interpack 2005: ASME Technical Conference on Packaging of MEMS, NEWS and Electric Systems, July 17–22, San Francisco, CA.CrossRefGoogle Scholar
Gimarc, B. M. (1983). “Topological charge stabilization,” J. Am. Chem. Soc. 105, 19791984.CrossRefGoogle Scholar
Gryko, J., Marzke, R. F., Ramachandran, G. K., Patton, D., Deb, S. K., and Sankey, O. F. (2000). “Low-density framework form of crystalline silicon with a wide optical band gap,” Phys. Rev. B62, R7707R7710.CrossRefGoogle Scholar
Hermann, R. F. W., Tanigaki, K., Kawaguchi, T., Kuroshima, S., and Zhou, O. (1999). “Electronic structure of Si and Ge gold-doped clathrates,” Phys. Rev. B60(19), 1324513428.CrossRefGoogle Scholar
Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G. (2004). “Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit,” Science 303, 818821.CrossRefGoogle Scholar
ICDD (2012). Powder Diffraction File (International Centre for Diffraction Data, Newtown Square, PA, USA (In press).Google Scholar
Kaduk, J. A., Wong-Ng, W., and Nolas, G. S. (2003). “X-ray diffraction patterns of two semiconducting clathrates, Sr8Ga16Ge30 and Cs8Na16Ge136: promising candidates for thermoelectric applications,” Rigaku J. 20(2), 211.Google Scholar
Kawaguchi, T., Tanigaki, K., and Yasukawa, M. (2000). “Ferromagnetisn in germanium clathrate: Ba6Mn2Ge44,” Appl. Phys. Lett. 77(21), 34383440.CrossRefGoogle Scholar
Kishimoto, K., Koyanagi, T., Akai, K., and Matsuura, M. (2007). “Synthesis and thermoelectric properties of type-I clathrate compounds Si46−xPxTe8,” Jpn. J. Appl. Phys. 46, L746L748.CrossRefGoogle Scholar
Kuhl, B., Czybulka, A., and Schuster, H.-U. (1995). “New ternary clathrate compounds in the systems barium–indium/zinc/cadmium–germanium: zintl compounds with phase width?,” Z. Anorg. Allg. Chem. 621, 16.CrossRefGoogle Scholar
Larson, A. C. and von Dreele, R. B. (1992). GSAS—General Structure Analysis System, U.S. Government Contract (W-7405-ENG-36) by the Los Alamos National Laboratory, University of California, for the U.S. Department of Energy.Google Scholar
Miller, G. J. (1996) in “Structure and bonding at the zintl border,” Chemistry, Structure, and Bonding of Zintl Phases and Ions, edited by Kauzlarich, S. M. (VCH, New York), pp. 159.Google Scholar
Nguyen, L. T. K., Aydemir, U., Baitinger, M., Bauer, E., Borrmann, H., Burkhardt, U., Custers, J., Haghighirad, A., Höfler, R., Luther, K. D., Ritter, F., Assmus, W., Grin, Yu., and Paschen, S. (2010). “Atomic ordering and thermoelectric properties of the n-type clathrate Ba8Ni3.5Ge42.10.4,” Dalton Trans. 39, 10711077.CrossRefGoogle Scholar
Nolas, G. S., Weakley, T. J. R., and Cohn, J. L. (1999). “Structural, chemical, and transport properties of a new clathrate compound: Cs8Zn4Sn42,” Chem. Mater. II, 24702473.CrossRefGoogle Scholar
Nolas, G. S., Poon, J., and Kanatzidis, M. (2006). “Recent developments in bulk and thermoelectric materials,” MRS Bull. 31, 199205.CrossRefGoogle Scholar
Paschen, S., Pacheco, V., Bentien, A., Sanchez, A., Carrillo-Cabrera, W., Baenitz, M., Iversen, B.B., Grin, Yu., and Steglich, F. (2003). “Are type-I clathrates zintl phases and phonon glasses and electron single crystals,” Physica B 328, 3943.CrossRefGoogle Scholar
Pauling, L. (1960). The Nature of the Chemical Bond (Cornell University Press, Ithaca, New York), 3rd ed.Google Scholar
Pyykkö, P. and Atsumi, M. (2009). “Molecular single-bond covalent radii for elements 1–118,” Chem. Eur. J. 15, 186197.CrossRefGoogle ScholarPubMed
Ravel, B. and Newville, M. (2005). “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT,” J. Synchrotron Radiat. 12, 537.CrossRefGoogle Scholar
Shi, X., Yang, J., Bai, S., Yang, J., Wang, H., Salvador, J. R., Zhang, W., Chen, L., and Wong-Ng, W. (2010). “On the design of high efficiency thermoelectric type I clathrates through transition metal doping,” Adv. Funct. Mater. 20, 755763.CrossRefGoogle Scholar
Tritt, T. M. (1996). “Thermoelectrics run hot and cold,” Science 272, 12761277.CrossRefGoogle Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B. (2001). “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413, 597602.CrossRefGoogle ScholarPubMed
Wilkinson, A. P., Lind, C., Young, R. A., Shastri, S. D., Lee, P. L., and Nolas, G. S. (2002). “Preparation, transport properties and structure analysis by resonant X-ray scattering of the type-I clathrate Cs8Cd4Sn42,” Chem. Mater. 14, 13001305.CrossRefGoogle Scholar
Yan, Y., Tang, X., Li, P., and Zhang, Q. (2009). “Microstructure and thermoelectric transport properties of type I clathrates Ba8Sb2Ga14Ge30 prepared by ultra rapid solidification process,” J. Electronic Mater. 38(7), 1278.CrossRefGoogle Scholar
Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C., and Eller, M. J. (1995). “Multiple scattering calculations of X-ray absorption spectra,” Phys. Rev. B. 52, 29953009.CrossRefGoogle ScholarPubMed