Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T03:39:01.868Z Has data issue: false hasContentIssue false

Crystal structure and magnetic properties of ternary Al3CoNd2 compound

Published online by Cambridge University Press:  25 August 2021

Liuqing Liang
Affiliation:
School of Material Science and Engineering, Baise University, Baise, Guangxi 533000, China Engineering Research Center of Advanced Aluminium Matrix Materials of Guangxi Province, Baise University, Baise, Guangxi 533000, China
Degui Li*
Affiliation:
School of Material Science and Engineering, Baise University, Baise, Guangxi 533000, China Engineering Research Center of Advanced Aluminium Matrix Materials of Guangxi Province, Baise University, Baise, Guangxi 533000, China
Chenzhong Jia
Affiliation:
School of Material Science and Engineering, Baise University, Baise, Guangxi 533000, China Engineering Research Center of Advanced Aluminium Matrix Materials of Guangxi Province, Baise University, Baise, Guangxi 533000, China
Ming Qin
Affiliation:
School of Material Science and Engineering, Baise University, Baise, Guangxi 533000, China Engineering Research Center of Advanced Aluminium Matrix Materials of Guangxi Province, Baise University, Baise, Guangxi 533000, China
*
a)Author to whom correspondence should be addressed. Electronic mail: lidegui354@163.com

Abstract

A ternary compound Al3CoNd2 was synthesized and its crystal structure parameters were determined by the Rietveld refinement method based on powder X-ray diffraction data. Results show that the compound crystallizes in the MgCu2-type structure (cubic Laves C15 phase, space group $Fd\bar{3}m$), with the lattice parameter of a = 7.8424(2) Ǻ, unit-cell volume of V = 482.33 Å3, and calculated density of Dcalc = 5.90 g.cm3. The residual factors converge to Rp = 0.1024 and Rwp = 0.1287. The reference intensity ratio value obtained experimentally is 3.03. Magnetic susceptibility measurements indicate an agreement with the Curie–Weiss law in the temperature range of 385–450 K, and paramagnetic Curie temperature of θp = 379.9 K. Both rare-earth elements and cobalt ions contribute to the paramagnetic moment. The saturation magnetic moment and magnetic hysteresis loop were measured for the Al3CoNd2 compound at various temperatures. Results show that the saturation magnetic moment value decreases with an increase in temperature and the compound becomes a ferromagnet below the Curie temperature Tc.

Type
Technical Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Canepa, F., Manfrinetti, P., Palenzona, A., Cirafifici, S., Merlo, F., and Cimberle, M. R. (2000). “Ferromagnetic interactions in Nd7Co6Al7,” Intermetallics 8, 267272.CrossRefGoogle Scholar
Chung, F. H. (1974). “Quantitative interpretation of X-ray diffraction patterns. I. Matrix-flushing method of quantitative multi-component analysis,” J. Appl. Crystallogr. 7, 519525.CrossRefGoogle Scholar
Dai, D. and Qian, K. (2017). Ferromagnetism (Science Press, Beijing).Google Scholar
Gschneidner, K. A. and Calderwood, F. W. (1989). “The AI–Nd (aluminum-neodymium) system,” Bull. Alloy Phase Diagrams 10(1), 2830.CrossRefGoogle Scholar
He, W., Zhong, H., Liu, H., Zhang, J., and Zeng, L. (2009). “Structure and electrical resistivity of NdCo2Al8,” J. Alloys Compd. 467, 69.CrossRefGoogle Scholar
Hubbard, C. R. and Snyder, R. L. (1988). “Reference intensity ratio measurement and use in quantitative XRD,” Powder Diffr. 3, 7478.CrossRefGoogle Scholar
JADE Version 6.0 (2002). XRD Pattern Processing (Materials Data Inc., Livermore, CA).Google Scholar
Koch, N. E. and Strydom, A. M. (2008). “Electronic and magnetic properties of the rare earth intermetallic compounds RRu4Sn6 (R=Nd, Sm, Gd, Tb, Dy and Ho),” J. Magn. Magn. Mater. 320, e128e131.CrossRefGoogle Scholar
Liang, L., Zeng, L., Liu, S., and He, W. (2013). “Crystal structure, thermal expansion and electrical properties of GdCo0.67Ga1.33 compound,” Physica B 426, 3539.CrossRefGoogle Scholar
Lu, X., Zeng, L., and Shih, K. (2011). “Crystal structure, thermal expansion and magnetic properties of Pr2Cu0.8Ge3 compound,” Mater. Chem. Phys. 130, 13361340.CrossRefGoogle Scholar
Marciniak, H. and Diduszko, R. (1997). DMPLOT: Plot View Program for Rietveld Refinement Method, Version 3.38 (Computer Software) (High Pressure Research Center, Warsaw, Poland).Google Scholar
Nereson, N., Olsen, C., and Arnold, G. (1966). “Magnetic properties of DyA12 and NdA12,” J. Appl. Phys. 37(12), 45784580.CrossRefGoogle Scholar
Pani, M., Merlo, F., and Fornasini, M. L. Z. (2002). “Structure and transport properties of the R2Co2Al compounds (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Y),” Z. Kristallogr. 217, 415419.CrossRefGoogle Scholar
Riani, P., Freccero, R., Sufryd, K., Arrighi, L., and Cacciamani, G. (2020). “The 500 C isothermal section of the Al–Co–Nd ternary system,” Phase Equilib. Diffus. 41, 347364.CrossRefGoogle Scholar
Snyder, R. L. (1992). “The use of reference intensity ratios in X-ray quantitative analysis,” Powder Diffr. 7, 186193.CrossRefGoogle Scholar
Stegemann, F. and Janka, O. (2018). “Two series of rare earth metal-rich ternary aluminium transition metallides: rE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu),” Z. Naturforsch. 73, 819830.CrossRefGoogle Scholar
Strnat, K. J. and Strnat, R. M. W. (1991). “Rare earth-cobalt permanent magnets,” J. Magn. Magn. Mater. 100, 3856.CrossRefGoogle Scholar
Szytula, A. and Leciejewicz, J. (1994). Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics (CRC Press, London).Google Scholar
Tao, X., Ouyang, Y., Liu, H., Zeng, F., Feng, Y., Du, Y., and Jin, Z. (2008). “Ab initio calculation of the total energy and elastic properties of laves phase C15 Al2RE (RE = Sc, Y, La, Ce–Lu),” Comput. Mater. Sci. 44, 392399.CrossRefGoogle Scholar
Taylor, K. N. R. and Darby, M. I. (1972). Physics of Rare Earth Solids (Chapman & Hall, London).Google Scholar
Tougait, O. and Noël, H. (2006). “Crystal structures and magnetic properties of NdCoAl4, Nd2Co3Al9 and Sm2Co3Al9,” J. Alloys Compd. 417, 16.CrossRefGoogle Scholar
Walter, N. and Schreiner, A. (1995). “A standard test method for the determination of RIR values by X-ray diffraction,” Powder Diffr. 10, 2533.Google Scholar
Weitzer, F., Hiebl, K., and Rogl, P. (1989). “Al, Ga substitution in RE2Fe17 (RE=Ce, Pr, Nd): magnetic behavior of RE2Fe15(Al,Ga)2 alloys,” J. Appl. Phys. 65, 49634967.CrossRefGoogle Scholar
Xiao, Y. G., Huang, Q., Ouyang, Z. W., Lynn, J. W., Liang, J. K., and Rao, G. H. (2006). “Crystal and magnetic structures of laves phase compound NdCo2 in the temperature range between 9 and 300 K,” J. Alloys Compd. 420, 2933.CrossRefGoogle Scholar
Yarmolyuk, P., Zarechnyuk, O. S., Aksel'Rud, L. G., Rykhal, R. M., and Rozhdestvenskaya, I. V. (1986). “Crystal structure of Pr7Co6Al7 — a representative of the family R7Co6Al7 (R=Pr, Nd, Sm),” Sov. Phys. Crystallogr. 31(2), 230.Google Scholar
Young, R. A., Larson, A. C., and Paiva-Santos, C. O. (2000). User's Guide to Program DBWS-9807a for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns with A PC and Various Other Computers (School of Physics, Georgia Institute of Technology, Atlanta, Georgia).Google Scholar
Zeng, L., Qin, P., Qin, H., and Zhang, J. (2007). “Crystal structure and magnetic properties of the compound FeDy6Sb2,” Mater. Lett. 61, 300303.CrossRefGoogle Scholar