Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T00:12:00.097Z Has data issue: false hasContentIssue false

Crystal data of two thiophosphates ATi2(PS4)3 with a new structural type (A=Na, Ag)

Published online by Cambridge University Press:  10 January 2013

X. Cieren
Affiliation:
Laboratoire de Cristallochimie du Solide, CNRS-URA 1388, Université P. et M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
J. Angenault
Affiliation:
Laboratoire de Cristallochimie du Solide, CNRS-URA 1388, Université P. et M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
J-C. Couturier
Affiliation:
Laboratoire de Cristallochimie du Solide, CNRS-URA 1388, Université P. et M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
M. Quartern
Affiliation:
Laboratoire de Cristallochimie du Solide, CNRS-URA 1388, Université P. et M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France

Abstract

Two new thiophosphates with an original structure corresponding to formula ATi2(PS4)3 (with A=Na,Ag) were synthesized by solid-state reaction. The two compounds are isostructural, hexagonal space group P6cc, Z=8. A single crystal of NaTi2(PS4)3 has been studied. Unit-cell parameters were determined for NaTi2(PS4)3 and AgTi2(PS4)3, respectively: a= 19.9131(6) Å, c= 11.5542(7) Å, V=3967.8(3) Å3 and a=20.0146(8) Å, c= 11.5467(8) Å, V=4005.7(4) Å3. Powder diffraction data are reported.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Couturier, J.-C., Angenault, J., and Quartern, M. (1991). “Crystal Chemistry and Ionic Conductivity of Solid Solutions AgTi2−xZrx(PO4)3 and Ag1+xTi2−xMx(PO4)3 with MIII=Sc, Fe,” Mat. Res. Bull. 26, 10091017.CrossRefGoogle Scholar
De Wolff, P. M. (1968). “A Simplified Criterion for the Reliability of Powder-Pattern Indexing,” J. Appl. Crystallogr. 1, 108109.CrossRefGoogle Scholar
Dragoo, A. L. (1990). Methods and Practices in X-Ray Powder Diffraction, JCPDS, 6.1.1–6.1.5.Google Scholar
Hagman, L. O., and Kierkegaard, P. (1968). “The Crystal Structure of , (PO4)3; Me=Ge, Ti, Zr, Acta. Chem. Scand. 22, 1822.CrossRefGoogle Scholar
Hong, H. Y. P. (1976). “Crystal Structure and Crystal Chemistry in the System Na1+xZr2Six P3−xO12,” Mat. Res. Bull. 11, 173.CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS*AIDS-80 (developed to NBS*AIDS-83). A FORTRAN Program for Crystallographic Data Evaluation. Tech. Note 1141 U. S. Dept. of Commerce, National Bureau of Standards, Gaithersburg, MD 20899.CrossRefGoogle Scholar
Smith, G. J. and Snyder, R. L., (1979). “FN: A Criterion for Rating Powder Diffraction Patterns and Evaluting the Reliability of Powder-Pattern Indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar