Skip to main content Accessibility help

Characterization of nanograined powder samples using the Rietveld method applied to electron diffraction ring patterns

  • A. Serafini (a1), L. Lutterotti (a2), S. Gross (a3) and S. Gialanella (a2)


A full-pattern fitting procedure based on the Rietveld method was applied to electron diffraction ring patterns of a two-phase system, exhibiting the co-presence of zinc sulfide (sphalerite) and zinc oxide (Wurtzite). Bright and dark field (DF) images reveal the presence of micrometric aggregates, composed of quasi-spherical nanosized crystallites. These conventional transmission electron microscopy imaging methods provide a general morphological characterization of the specimens although, in the present case, they are not suitable for a detailed characterization of the microstructural features of the analyzed samples. Owing to the overlap and broadening of the diffraction rings of the two phases, DF images cannot provide a satisfactory picture of the individual crystallites of each single phase. To overcome this limit, the mentioned Rietveld approach was applied to model the electron diffraction data. The crystalline domain size and relevant shapes for both phases were successfully evaluated using the proposed methodological approach. The excellent results obtained in the microstructural characterization of the nanostructured multiphase samples demonstrate the capability of this technique, that may represents a fully quantitative method for the routine characterization of crystalline nanomaterials.


Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail:


Hide All
Baer, D. R., Gaspar, D. J., Nachimuthu, P., Techane, S. D., and Castner, D. G. (2010). “Application of surface chemical analysis tools for characterization of nanoparticles,” Anal. Bioanal. Chem. 396, 9831002.
Bell, N. C., Minelli, C., Tompkins, J., Stevens, M. M., and Shard, A. G. (2012). “Emerging techniques for submicrometer particle sizing applied to Stober silica,” Langmuir 28, 1086010872.
Blackman, M. (1939). “On the intensities of electron diffraction rings,” Proc. R. Soc. Lond. A 173, 6882.
Boullay, P., Lutterotti, L., Chateigner, D., and Sicard, L. (2014). “Fast microstructure and phase analyses of nanopowders using combined analysis of transmission electron microscopy scattering patterns,” Acta Crystallogr. Sect. A, Found. Adv. 70, 448456.
Dieckmann, Y., Cölfen, H., Hofmann, H., Petri-Fink, A., Hofmann, H., Cölfen, H., Dieckmann, Y., Cölfen, H., Hofmann, H., and Petri-Fink, A. (2009). “Particle size distribution measurements of manganese-doped ZnS nanoparticles,” Anal. Chem. 81, 38893895.
Dolcet, P., Maurizio, C., Casarin, M., Pandolfo, L., Gialanella, S., Badocco, D., Pastore, P., Speghini, A., and Gross, S. (2015). “An effective two-emulsion approach to the synthesis of doped ZnS crystalline nanostructures,” Eur. J. Inorg. Chem. 4, 706714.
Gemmi, M., Voltolini, M., Ferretti, A. M., and Ponti, A. (2011). “Quantitative texture analysis from powder-like electron diffraction data,” J. Appl. Crystallogr. 44, 454461.
Giorgetti, E., Marsili, P., Cicchi, S., Lascialfari, L., Albiani, M., Severi, M., Caporali, S., Muniz-Miranda, M., Pistone, A., and Giammanco, F. (2015). “Preparation of small size palladium nanoparticles by picosecond laser ablation and control of metal concentration in the colloid,” J. Colloid Interface Sci. 442, 8996.
Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., and Le Bail, A. (2009). “Crystallography open database–an open-access collection of crystal structures”, J. Appl. Crystallogr. 42(4), 726729.
Hassellöv, M., Readman, J. W., Ranville, J. F., and Tiede, K. (2008). “Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles,” Ecotoxicology 17, 344361.
Ischia, G., Wenk, H.-R., Lutterotti, L., and Berberich, F. (2005). “Quantitative Rietveld texture analysis of zirconium from single synchrotron diffraction images,” J. Appl. Crystallogr. 38, 377380.
Jain, P. K., Huang, X., El-Sayed, I. H., and El-Sayed, M. A. (2008). “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 15781586.
Kim, J. G., Seo, J. W., Cheon, J., and Kim, Y. J. (2009). “Rietveld analysis of nano-crystalline MnFe2O4 with electron powder diffraction,” Bull. Korean Chem. Soc. 30, 183187.
Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J., and Lead, J. R. (2008). “Nanomaterials in the environment: behavior, fate, bioavailability, and effects.,” Environ. Toxicol. Chem. 27, 18251851.
Lábár, J. L. (2008). “Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films. I. Principles,” Microsc. Microanal. 14, 287295.
Lábár, J. L. (2009). “Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films, part II: implementation,” Microsc. Microanal. 15, 2029.
Lábár, J. L., Adamik, M., Barna, B. P., Czigány, Z., Fogarassy, Z., Horváth, Z. E., Geszti, O., Misják, F., Morgiel, J., Radnóczi, G., Sáfrán, G., Székely, L., and Szüts, T. (2012). “Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films. III. Application examples,” Microsc. Microanal. 18, 406420.
Lascialfari, L., Marsili, P., Caporali, S., Muniz-Miranda, M., Margheri, G., Serafini, A., Brandi, A., Giorgetti, E., and Cicchi, S. (2014). “Carbon nanotubes/laser ablation gold nanoparticles composites,” Thin Solid Films 569, 9399.
Linkov, P., Artemyev, M., Efimov, A. E., and Nabiev, I. (2013). “Comparative advantages and limitations of the basic metrology methods applied to the characterization of nanomaterials,” Nanoscale 5, 87818798.
Linsinger, T., Roebben, G., Gilliland, D., Calzolai, L., Rossi, F., Gibson, N., and Klein, C. (2012). Requirements on Measurements for the Implementation of the European Commission Definition of the Term ‘Nanomaterial (JRC Reference Report, EUR 25404 EN).
Lutterotti, L. (2010). “Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction”, Nucl. Instrum. Methods Phys. Res.: B, Beam Interact. Mater. Atoms 268(3), 334340.
Lutterotti, L., Bortolotti, M., Ischia, G., Lonardelli, I., and Wenk, H. R. (2007). “Rietveld texture analysis from diffraction images,” Z. Kristallogr. Suppl. 26, 125130.
Lutterotti, L., Vasin, R., and Wenk, H. R. (2014). “Rietveld texture analysis from synchrotron diffraction images. I. Calibration and basic analysis,” Powder Diffraction 29(1), 7684.
Peng, L. M., Ren, G., Dudarev, S. L., and Whelan, M. J. (1996). “Robust parameterization of elastic and absorptive electron atomic scattering factors,” Acta Crystallogr. Sect. A Found. Crystallogr. 52, 257276.
Popa, N. C. (1998). “The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement,” J. Appl. Crystallogr. 31, 176180.
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9, 671675.
Silvestre, C., Duraccio, D., and Cimmino, S. (2011). “Food packaging based on polymer nanomaterials,” Prog. Polym. Sci. 36, 17661782.
Simon, P. and Gogotsi, Y. (2008). “Materials for electrochemical capacitors,” Nat. Mater. 7, 845854.
Yetisen, A. K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M. R., Hinestroza, J. P., Skorobogatiy, M., Khademhosseini, A., and Yun, S. H. (2016). “Nanotechnology in textiles,” ACS Nano 10, 30423068.


Type Description Title
Supplementary materials

Serafini supplementary material
Serafini supplementary material

 Unknown (24 KB)
24 KB

Characterization of nanograined powder samples using the Rietveld method applied to electron diffraction ring patterns

  • A. Serafini (a1), L. Lutterotti (a2), S. Gross (a3) and S. Gialanella (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed