Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-10T07:23:57.454Z Has data issue: false hasContentIssue false

Best references for the QPA of Portland cement

Published online by Cambridge University Press:  01 August 2022

T. G. Fawcett*
Affiliation:
International Centre for Diffraction Data, Newton Square, PA, USA
J. R. Blanton
Affiliation:
International Centre for Diffraction Data, Newton Square, PA, USA
S. N. Kabekkodu
Affiliation:
International Centre for Diffraction Data, Newton Square, PA, USA
T. N. Blanton
Affiliation:
International Centre for Diffraction Data, Newton Square, PA, USA
J. Lyza
Affiliation:
Levy Technical Laboratories, Edward C. Levy Co., Portage, IN, USA
D. Broton
Affiliation:
CTL Group, Skokie, IL, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: dxcfawcett@outlook.com

Abstract

Cement references were reviewed and whole pattern methods were developed for the quantitative phase analysis (QPA) of Type I Portland Cements. A set of control references were established for phase identification and quantitative analysis using laboratory diffractometers. Both RIR and Rietveld whole pattern fitting methods were used in the analyses. A block refined, parameter restricted, Rietveld method produced the best QPA results by comparison with known mixtures. Similar to prior literature findings, care has to be taken because of the severe peak overlap of the major calcium silicate and calcium aluminate phases in Portland cement and the complexity of the chemistry and structures involved. Two of the four major phases identified are doped supercells and the major C3S phase is also disordered.

Type
Proceedings Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Standard Test Method C-1365-18, ASTM (2018). Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Portland Cement Clinker Using X-ray Powder Diffraction Analysis (ASTM International, Conshohocken, PA, USA). The method was first issued in 1998 and last updated in March 2018.Google Scholar
Courtial, M., de Noirfontaine, M.-N., Dunstetter, F., Gasecki, G., and Signes-Frehel, M. (2003). “Polymorphism of tricalcium silicate in Portland cement: a fast visual identification of structure.” Powd. Diff., 18(1), 715.10.1154/1.1523079CrossRefGoogle Scholar
De la Torre, A. G. and Aranda, M. A. G. (2002). “The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses,” Cem. Concr. Res. 32(9), 13471356. doi:10.1016/S0008-8846(02)00796-2CrossRefGoogle Scholar
De la Torre, A. G. and Aranda, M. A. G. (2003). “Accuracy in Rietveld quantitative phase analysis of Portland cements,” Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 36, 11691176. doi:10.1107/S002188980301375XGoogle Scholar
Fawcett, T. G. (2021). “Private Communication – over a period of several decades the author has studied many lime and calcite deposits by both XRD and XRF. In addition, he has studied Mg in calcite in a variety of shellfish, most notably quahogs, oysters and lightning whelks. Also see Berg, R. D., Solomon, E. A. and Tang, F.-Z. (2019). 'The role of marine sediment diagenesis in the modern oceanic magnesium cycle',” Nat. Commun., 110. doi:10.1038/s41467-019-12322-2Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., Crowder, C. E., and Blanton, T. N. (2015). “Simulation tools and references for the analysis of nanomaterials,” Adv. X-Ray Anal. 58, 108120. Simulation Tools and References for the Analysis of Nanomaterials (icdd.com).Google Scholar
Fawcett, T. G., Gates-Rector, S., Gindhart, A., Rost, M., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2019). “Formulation analyses of high volume prescription drugs,” Powder Diffr. 34(2), 130142. doi:10.1017/S0885715619000253CrossRefGoogle Scholar
Fawcett, T. G., Gates-Rector, S., Gindhart, A. M., Rost, M., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2020). “Total pattern analyses for non-crystalline materials,” Powder Diffr. 35(2), 8288. doi:10.1017/S0885715620000263CrossRefGoogle Scholar
Gates-Rector, S. D. and Blanton, T. N. (2019). “The Powder Diffraction File: a quality materials characterization database,” Powder Diffr. 34, 352360.CrossRefGoogle Scholar
Highway Research Board, HRB (1972). Special Report 127, Guide to Compounds of Interest in Cement and Concrete Research (Highway Research Board • Division of Engineering • National Research Council, National Academy of Sciences, National Academy of Engineering, Washington, DC).Google Scholar
MDI (2021). JADE Pro (Computer Software) (Materials Data, Livermore, CA, USA).Google Scholar
Nicola, V. Y. S., Madsen, I. C., Manias, C., and Retallack, D. (2001). “On-line X-ray diffraction for quantitative phase analysis: application in the Portland cement industry,” Powder Diffr. 16(2), 7180. doi:10.1154/1.1359796Google Scholar
Peterson, V. K., Ray, A. S., and Hunter, B. A. (2006). “A comparative study of Rietveld phase analysis of cement clinker using neutron, laboratory X-ray and synchrotron data,” Powder Diffr. 21(1), 1218. doi:10.1154/1.2040455CrossRefGoogle Scholar
Pritula, O., Smrcok, L., and Baumgartner, B. (2003). “On reproducibility of Rietveld analysis of reference Portland cement clinkers,” Powder Diffr. 18(1), 1622. doi:10.1154/1.1545116CrossRefGoogle Scholar
Stutzman, P. and Heckert, A. (2019). Certification of Standard Reference Material Clinker 2687a; NIST Special Publication 260-195; U.S. Government Printing Office: Washington, DC. Available at: https://www.nist.gov/sites/default/files/documents/2019/05/14/sp260-195.pdf (accessed October 2019).Google Scholar
Stutzman, P., Lespinasse, G., and Leigh, S. (2008). Compositional Analysis and Certification of NIST Reference Material Clinker 2686a; NIST Technical Note 1602 (U.S. Government Printing Office, Washington, DC).Google Scholar
Taylor, H. F. W. (1997). Cement Chemistry (Telford, London).10.1680/cc.25929CrossRefGoogle Scholar
Walenta, G. and Füllmann, T. (2004). “Advances in quantitative XRD analysis for clinker, cements, and cementitious additions,” Powder Diffr. 19, 4044. doi:10.1154/1.1649328CrossRefGoogle Scholar
Webster (2021). “Portland cement.” Merriam-Webster.com Dictionary, Merriam-Webster. Available at: https://www.merriam-webster.com/dictionary/portland%20cement (accessed 14 August 2021).Google Scholar