Skip to main content Accessibility help
×
Home

The application of geometry corrections for Diffraction Strain Tomography (DST) analysis of a Ni-base superalloy blade

  • Nikolaos Baimpas (a1), Mengyin Xie (a1), Christina Reinhard (a2) and Alexander M. Korsunsky (a1)

Abstract

X-ray diffraction is commonly used for non-destructive and precise quantitative determination of internal strain distributions. In recent years tomographic imaging has also been established as a powerful tool for precise non-destructive evaluation of internal structure in materials offering submicron resolution 3D imaging of density distributions. “Diffraction Strain tomography” (DST) concept (Korsunsky, Vorster et al. 2006) has been introduced as a means of tomographic reconstruction of two-dimensional internal strain distributions. The application of this approach during in situ loading has been subsequently demonstrated (Korsunsky et al., 2011). In the present study, similar acquisition strategy was used for diffraction data collection from a Ni-base superalloy turbine blade fabricated by DMLS (Direct Metal Laser Sintering, also sometimes referred to as DLD, Direct Laser Deposition). The experiment was conducted on beamline I12 (JEEP) at Diamond Light Source, UK. Each location within the object was multiply “sampled” (i.e. diffraction patterns were collected containing its contribution) by incident X-ray beams travelling through the sample at different angles. The setup of the beamline also allowed to acquire simultaneously a conventional (absorption tomography) reconstruction of the sample shape. The aim of the experiment was to obtain detailed information about the sample shape, structure, and state. The interpretation of diffraction tomography data requires precise calibration of the sample detector distance at different rotations and positions across the sample, and subsequent application of corrections to remove geometry-induced strain aberrations.

Copyright

Corresponding author

a) Nikolaos Baimpas is doctoral student in the Department of Engineering Science, University of Oxford, OX1 3PJ (corresponding author, phone: +44(0)18652-83447; e-mail: nikolaos.baimpas@eng.ox.ac.uk).

References

Hide All
Han, L., Phatak, K. M. and Liou, F. W. (2005). “Modeling of laser deposition and repair process,” J. Laser Appl. 17(2), 8999.
Hofmann, F., Abbey, B., Conner, L., Baimpas, N., Song, X., Keegan, S., and Korsunsky, A. M. (2011). “Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques,” Int. J. Mater. Res. 103(2), 192199.
Korsunsky, A. M., Baimpas, N., Song, X., Belnoue, J., Hofmann, F., Abbey, B., Xie, M., Andrieux, J., Buslaps, T. and Neo, T. K. (2011). “Strain tomography of polycrystalline zirconia dental prostheses by synchrotron X-ray diffraction,” Acta Mater. 59(6), 25012513.
Korsunsky, A. M., Vorster, W. J. J., Zhang, S. Y., Dini, D., Latham, D., Golshan, M., Liu, J., Kyriakoglou, Y. and Walsh, M. J. (2006). “The principle of strain reconstruction tomography: Determination of quench strain distribution from diffraction measurements,” Acta Mater. 54(8), 21012108.
Korsunsky, A. M., Xie, X., Baimpas, N. and Song, X. (2012). “X-ray Texture Analysis and Imaging of Engineering Materials at Oxford HEX-lab,” Proceedings of the International MultiConference of Engineers and Computer Scientists 2012. Hong Kong, IMECS 2012. II.
Moat, R. J., Pinkerton, A. J., Li, L., Withers, P. J. and Preuss, M. (2009). “Crystallographic texture and microstructure of pulsed diode laser-deposited Waspaloy,” Acta Mater. 57(4), p.12201229.
Obrist, A. (2001). “First Article Inspection Based on Industrial X-ray Computed Tomography,” Materials Testing and Research International Conference Nuremburg 177-180.
Prime, M. B. (2001). “Cross-Sectional mapping of residual stresses by measuring the surface contour after a cut,” J. Eng. Mater. Technol. 123, 162168.
Toyserkani, E., Khajepour, A. and Corbin, S. (2000). Laser Cladding (CRC Press, Boca Raton, FL), Chap. 2.

Keywords

The application of geometry corrections for Diffraction Strain Tomography (DST) analysis of a Ni-base superalloy blade

  • Nikolaos Baimpas (a1), Mengyin Xie (a1), Christina Reinhard (a2) and Alexander M. Korsunsky (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed