Skip to main content Accessibility help
×
Home

An image processing application for quantitative cross-correlative microscopy for large cell-populations: a gold nanoparticle radiosensitisation study

  • Tyron Turnbull (a1), Michael Douglass (a2) (a3), Eva Bezak (a3) (a4), Benjamin Thierry (a1) and Ivan Kempson (a1)...

Abstract

A robust analysis script was developed in MATLAB for cross-correlative quantification of internalised gold nanoparticle (AuNP) uptake in a large number of individual cells with the corresponding number of DNA double-strand breaks (DSBs) in the same cells. The correlation of inorganic NP content with a biological marker at the single-cell level will aid in the elucidation of mechanisms of NP radiosensitisation. PC-3 cells were co-cultured with AuNPs and irradiated using an iridium-192 source. AuNP uptake was measured using synchrotron X-ray fluorescence (XRF) and DSBs imaged via confocal microscopy. MATLAB 2016a was used to develop a script to cross-correlate the two imaging modalities and quantify both DSBs and internalised AuNP content in the same cell. Various user-defined options written into the script give a high degree of versatility, which can account for a large number of variables in experimental parameters and data acquisition. The analysis procedure is flexible and robust, which gives consistent consideration to the wide spectrum of potential input image/data sets. Quantitative correlative microscopy was achieved with a custom MATLAB script used to correlate γH2AX foci (a marker of DNA DSBs) from confocal microscopy with AuNP content acquired using synchrotron XRF at the single-cell level. The script can be extended to a broad range of multi-modality imaging spectroscopies.

Copyright

Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail: Ivan.Kempson@unisa.edu.au

References

Hide All
Brun, E. and Sicard-Roselli, C. (2016). “Actual questions raised by nanoparticle radiosensitization,” Radiat. Phys. Chem. 128, 134142.
Cruje, C. and Chithrani, B. D. (2015). “Integration of peptides for enhanced uptake of PEGylayed gold nanoparticles,” J. Nanosci. Nanotechnol. 15(3), 21252131.
Douglass, M., Bezak, E., and Penfold, S. (2013). “Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model,” Med. Phys. 40(7), 071710.
Drescher, D., Giesen, C., Traub, H., Panne, U., Kneipp, J., and Jakubowski, N. (2012). “Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS,” Anal. Chem. 84(22), 96849688.
Enüstün, B. V. and Turkevich, J. (1963). “Coagulation of colloidal gold,” J. Am. Chem. Soc. 85(21), 33173328.
Hainfeld, J. F., Slatkin, D. N., and Smilowitz, H. M. (2004). “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309N315.
Jain, S., Hirst, D. G., and O'Sullivan, J. M. (2012) “Gold nanoparticles as novel agents for cancer therapy,” Br. J. Radiol. 85(1010), 101113.
Kempson, I., Smith, E., Gao, M., Jonge, M. D., and Thierry, B. (2014). “Large area synchrotron X-ray fluorescence mapping of biological samples,” J. Instrum. 9(12), C12040.
Liu, C. J., Wang, C. H., Chen, S. T., Chen, H. H., Leng, W. H., Chien, C. C., Wang, C. L., Kempson, I. M., Hwu, Y., Lai, T. C., Hsiao, M., Yang, C. S., Chen, Y. J., and Margaritondo, G. (2010). “Enhancement of cell radiation sensitivity by pegylated gold nanoparticles,” Phys. Med. Biol. 55(4), 931945.
Liu, T. and Thierry, B. (2012). “A solution to the PEG dilemma: efficient bioconjugation of large gold nanoparticles for biodiagnostic applications using mixed layers,” Langmuir 28(44), 1563415642.
Liu, T., Kempson, I., De Jonge, M., Howard, D. L., and Thierry, B. (2014). “Quantitative synchrotron X-ray fluorescence study of the penetration of transferrin-conjugated gold nanoparticles inside model tumour tissues,” Nanoscale 6(16), 97749782.
Liu, Y., Liu, X., Jin, X., He, P., Zheng, X., Dai, Z., Ye, F., Zhao, T., Chen, W., and Li, Q. (2015). “The dependence of radiation enhancement effect on the concentration of gold nanoparticles exposed to low- and high-LET radiations,” Phys. Med. 31(3), 210218.
McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O'Sullivan, J. M., Prise, K. M., Hirst, D. G., and Currell, F. J. (2011a). “Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles,” Sci. Rep., 1, 18.
McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O'Sullivan, J. M., Prise, K. M., Hirst, D. G., and Currell, F. J. (2011b). “Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy,” Radiother. Oncol. 100(3), 412416.
Paterson, D., de Jonge, M. D., McKinlay, J., Starritt, A., Kusel, M., Ryan, C. G., Kirkham, R., Moorhead, G., and Siddons, D. P. (2011). “The x-ray fluorescence microscopy beamline at the Australian synchrotron,” AIP Conf. Proc, 1365, 219222.
Peng, H. (2008). “Bioimage informatics: a new area of engineering biology,” Bioinformatics 24(17), 18271836.
Ryan, C. G. (2000). “Quantitative trace element imaging using PIXE and the nuclear microprobe,” Int. J. Imaging Syst. Technol. 11(4), 219230.
Subiel, A., Ashmore, R., and Schettino, G. (2016). “Standards and methodologies for characterizing radiobiological impact of high-Z nanoparticles,” Theranostics 6(10), 16511671.
Turnbull, T., Douglass, M., Paterson, D., Bezak, E., Thierry, B., and Kempson, I. (2015). “Relating intercellular variability in nanoparticle uptake with biological consequence: a quantitative X-ray fluorescence study for radiosensitization of cells,” Anal. Chem. 87(21), 1069310697.
Vogt, S. and Lanzirotti, A. (2013). “Trends in X-ray fluorescence microscopy,” Synchrotron Radiat. News 26(2), 3238.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed