Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-18T20:42:40.524Z Has data issue: false hasContentIssue false

XRD diffraction data and Rietveld refinement of Na8[Si6Al6O24]Cl2

Published online by Cambridge University Press:  29 February 2012

Guilherme Oliveira Siqueira
Affiliation:
Department of Chemistry, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
Érica Gonçalves Gravina
Affiliation:
Department of Chemistry, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
Jackson Antônio Lamounier Camargos Resende
Affiliation:
Department of Chemistry, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
Nelson Gonçalves Fernandes*
Affiliation:
Department of Chemistry, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
*
a)Author to whom correspondence should be addressed. Electronic mail: ngfernandes@qui.ufmg.br

Abstract

A natural sodalite from the geological site Alkaline Complex of Floresta Azul, Bahia, Brazil, has been characterized by electron microprobe, infrared spectroscopy, and powder high-resolution X-ray diffraction techniques. The mineral is an aluminosilicate framework, formed by cages called sodalite unity. Although the sample is natural, the chemical analysis reveals that it is indeed the end member sodalite sensu strictu, Na8[Si6Al6O24]Cl2. Infrared spectroscopy shows Si, Al tetrahedral-oxygen stretching nonsymmetric mode, stretching symmetric mode, and bending modes. Indexing of the experimental X-ray diffraction pattern led to cubic space group P-43n, and unit-cell parameters: a=8.8767(7) Å, Dx=2.301 g cm−3, and V=699.46(1) Å3. X-ray diffraction data are reported. Rietveld refinement was also performed, and the confidence factors are Rp=0.079, Rwp=0.118, and χ2=2.19. The structure of the minerals of sodalite group holds four different tetrahedra: AlO4, ClNa4, Na(ClO3), and SiO4, with Al, Cl, Na, and Si located at the center of each tetrahedron.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Creighton, J. A., Deckman, H. W., and Newsam, J. M. (1994). “Computer simulation and interpretation of the infrared and Raman spectra of sodalite frameworks,” J. Phys. Chem.JPCHAX10.1021/j100053a018 98, 448459.CrossRefGoogle Scholar
Farrugia, L. J. (1997). “ORTEP-3 for Windows—a version of ORTEP III with a graphical user interface (GUI),” J. Appl. Crystallogr.JACGAR10.1107/S0021889897003117 30, 565.CrossRefGoogle Scholar
Hassan, I., Peterson, R. C., and Grundy, H. D. (1985). “The structure of lazurite, ideally Na6Ca2(Al6Si6O24)S2, a member of the sodalite group,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun.ACSCEE10.1107/S0108270185005662 C41, 827832.CrossRefGoogle Scholar
Hassan, I. and Grundy, H. (1984). “The crystal structures of sodalite-group minerals,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768184001683 40, 613.CrossRefGoogle Scholar
Henderson, C. M. B. and Taylor, D. (1977). “Infrared spectra of anhydrous members of the sodalite family,” Spectrochim. Acta, Part ASAMCAS 33A, 283290.CrossRefGoogle Scholar
Hirshfeld, F. L. (1976). “Can X-ray data distinguish bonding effects from vibrational smearing?Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.ACACBN10.1107/S0567739476000533 32, 239244.CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (2000). “General structure analysis system (GSAS),” Los Alamos National Laboratory Report No. LAUR 86-748.Google Scholar
Lonsdale, K. (1985). International Tables for X-ray Crystallography (D. Reidel, Dordrecht), Vol. III (Table 4.1.1).Google Scholar
Löns, J. and Schulz, H. (1967). “Strukturverfeinerung von Sodalith, Na8Si6Al6O24Cl2,” Acta Crystallogr.ACCRA910.1107/S0365110X67002920 23, 434436.Google Scholar
Luger, S., Felsche, J., and Fischer, P. (1987). “Structure of hydroxysodalite Na8[AlSiO4]6(OH)2, a powder neutron diffraction study at 8 K,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 43, 13.CrossRefGoogle Scholar
McMullan, R. K., Ghose, S., Haga, N., and Schomaker, V. (1996). “Sodalite, Na4Si3Al3O12Cl: Structure and ionic mobility at high temperatures by neutron diffraction,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768196004132 52, 616627.CrossRefGoogle Scholar
Pauling, L. (1930). “The structure of sodalite and helvite,” Z. Kristallogr.ZEKRDZ 74, 213225.CrossRefGoogle Scholar
Petricek, V., Dusek, M., and Palatinus, L. (2000). JANA 2000, Structure Determination Software Programs, Institute of Physics, Prague, Czech Republic.Google Scholar
Resende, J. A. L. C. and Fernandes, N. G. (2005). “X-ray powder refinement of a natural garnet from Diamantina, Minas Gerais, Brazil,” Acta Crystallogr.ACSEBH 61, i265–i267.Google Scholar
Taylor, D. (1967). “The sodalite group of minerals,” Contrib. Mineral. Petrol.CMPEAP10.1007/BF00372796 16, 172188.CrossRefGoogle Scholar
Taylor, D. (1975). “Cell parameter correlations in the aluminosilicate-sodalites,” Contrib. Mineral. Petrol.CMPEAP 51, 3947.CrossRefGoogle Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr.JACGAR10.1107/S0021889801002242 34, 210213.CrossRefGoogle Scholar
Werner, P. -E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr.JACGAR10.1107/S0021889885010512 18, 367370.CrossRefGoogle Scholar