Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T12:53:27.151Z Has data issue: false hasContentIssue false

X-ray powder diffraction data for a new compound (NH4)H2Co2O(OH)(MoO4)1.6(WO4)0.4•H2O type ϕy

Published online by Cambridge University Press:  20 September 2018

Adriana Echavarría
Affiliation:
Grupo Catalizadores y Adsorbentes, Instituto de Química. Universidad de Antioquia. UdeA, Calle 70 No. 52-21, Medellín, Colombia
Sandra L. Amaya*
Affiliation:
Grupo Catalizadores y Adsorbentes, Instituto de Química. Universidad de Antioquia. UdeA, Calle 70 No. 52-21, Medellín, Colombia
*
a)Author to whom correspondence should be addressed. Electronic mail: sandra.amaya@udea.edu.co; adriana.echavarria@udea.edu.co

Abstract

A new trimetallic compound with formula (NH4)H2Co2O(OH)(MoO4)1.6(WO4)0.4•H2O and lamellar structure was prepared by hydrothermal synthesis. The solid was characterized using X-ray diffraction (XRD), thermogravimetric (TGA) and differential thermal (DTA) analyses, Fourier-transform infrared spectroscopy (FT–IR), laser Raman spectroscopy (LRS), and atomic absorption spectroscopy (AA). Crystallographic studies showed that the solid crystallizes with hexagonal symmetry in space group R-3 m with a = 6.0807 and c = 21.7591 Å.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A., and Rizzi, R. (2009). “EXPO2009: structure solution by powder data in direct and reciprocal space,” J. Appl. Crystallog. 42, 11971202.Google Scholar
Braterman, P., Xu, Z., and Yarberry, F. (2004). “Layered double hydroxides (LDHs),” in Handboook of Layered Materials, edited by Auerbach, S., Carrado, K. and Dutta, P. (Marcel Dekker Inc., New York), pp. 373474.Google Scholar
Clearfield, A., Sims, M., and Gopal, R. (1976). “Heavy-metal molybdates I. Crystal structure of a basic zinc molybdate NaZn2OH(H2O)(MoO4)2,” Inorg. Chem. 15, 335338.Google Scholar
ICDD (2009). “Powder diffraction file,” in International Centre for Diffraction Data, edited by Kabekkodu, S. (Newtown Square, Pennsylvania).Google Scholar
Ko, E. I. (1999). “Sol-gel process,” in Preparation of Solid Catalysts, edited by Ertl, G., Knözinger, H. and Weitkamp, J. (Wiley - VCH, Munich), pp. 8597.Google Scholar
Kolthoff, I. M. (1932). “Theory of coprecipitation. The formation and properties of crystalline precipitates,” J. Phys. Chem. 36(3), 860881.Google Scholar
Laugier, J., and Bochu, B. (2000). LMGP-Suite for Programs for the Interpretation of X-ray Experiments. (ENSP/Laboratoire des Matériaux et du Génie Physique, Saint Martin D’ Heres, France).Google Scholar
Levin, D., Soled, S. L., and Ying, J. Y. (1996). “Crystal structure of an ammonium nickel molybdate prepared by chemical precipitation,” Inorg. Chem. 35, 41914197.Google Scholar
Matsuura, I., Mizuno, S., and Hashiba, H. (1986). “Acidic properties of molybdate-based catalysts for propylene oxidation,” Polyhedron. 5, 111117.Google Scholar
Mazzocchia, C., Kaddouri, A., Anouchinsky, R., Sautel, M., and Thomas, G. (1993). “On the NiO, MoO3 mixed oxide correlation between preparative procedures thermal activation and catalytic properties,” Solid State Ionics. 63–65, 731735.Google Scholar
Menon, P. G. and Delmon, B. (1999). “Solid-State reactions,” in Preparation of Solid Catalysts, edited by Ertl, G., Knözinger, H. and Weitkamp, J. (Wiley - VCH, Munich), pp. 109138.Google Scholar
Mitchell, P. C. H. and Wass, S. A. (2002). “Propane dehydrogenation over molybdenum hydrotalcite catalysts,” Appl. Catal. A: Gen. 225, 153165.Google Scholar
Nyquist, R. and Kagel, R. (1971). Infrared spectra of Inorganic Compounds (Academic Press, New York).Google Scholar
Palacio, L. A., Echavarría, A., Hoyos, D. A., and Saldarriaga, C. (2005). “Synthesis, characterization and structural data of an ammonium manganomolybdate type ϕx,” Solid State Sci. 7, 10431048.Google Scholar
Pezerat, H. (1965). “Contribution à l’étude des molybdates hydrates de zinc, cobalt et nickel,” C.R. Acad. Sci. Paris. 261, 54905493.Google Scholar
Rodemerck, U. and Linke, D. (2009). “High-throughput experimentation,” in De Jong, K. P., editor. Synthesis of Solid Catalysts (Wiley-VCH, Weinheim), pp. 217240.Google Scholar
Saleem, S. S., Aruldhas, G., and Bist, H. D. (1983). “Normal modes of the MoO42− ion in Tb1.8Eu0.2(MoO4)3 single crystal,” J. of Solid State Chem. 48, 7785.Google Scholar
Shirley, R. (1999). The CRYSFIRE System for Automatic Powder Indexing: User´s Manual, 41 Guildford Park Avenue (The Lattice Press, Guildford, Surrey GU2 7NL, England).Google Scholar
Stout, G. H. and Jensen, L. H. (1989). X-ray Structure Determination. A Practical Guide (Wiley Interscience, Seattle, Washington), 2nd ed.Google Scholar
Topsøe, H., Clausen, B., and Massoth, F. (1996). “Hydrotreating catalysis,” in Catalysis Science and Technology, edited by Anderson, J. R. and Boudart, M. (Springer Verlag, Berlin), Vol. 11, pp. 1269.Google Scholar
Vie, D., Martínez, E., Sapiña, F., Folgado, J.-V., and Beltrán, A. (2004). “Freeze-Dried precursor-based synthesis of nanostructured cobalt−nickel molybdates Co1−xNixMoO4,” Chem. Mater. 16, 16971703.Google Scholar
Zhang, D., Duan, A., Zhao, Z., Wana, G., Gao, Z., Jiang, G., Chi, K., and Chuang, K. H. (2010). “Preparation, characterization and hydrotreating performances of ZrO2–Al2O3-supported NiMo catalysts,” Catal. Today. 149, 6268.Google Scholar
Supplementary material: File

Echavarría and Amaya supplementary material

Echavarría and Amaya supplementary material 1

Download Echavarría and Amaya supplementary material(File)
File 15.2 KB