Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-zn7qb Total loading time: 0.313 Render date: 2021-04-20T17:43:23.196Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

X-ray characterization of crosslinked methacrylate copolymers for application as dielectric layers in organic electronics

Published online by Cambridge University Press:  25 July 2019

Dieter Jehnichen
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Doris Pospiech
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Andreas Berndt
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Selina C. Gomoll
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Eva Natkowski
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, Germany
Matthias Plötner
Affiliation:
Technische Universität Dresden, Institute of Semiconductors and Microsystems (Institut für Halbleiter- und Mikrosystemtechnik), D-01062 Dresden, Germany
Corresponding
E-mail address:

Abstract

Poly(methyl methacrylate) (PMMA) is one of the most important polymers for application as a dielectric layer in organic electronics, e.g. in organic field-effect transistors. The key to improve the transistor performance is the optimization of the interface between the semiconductor and the dielectric layer. Here, the surface order in thin films of PMMA copolymers with self-organized, semifluorinated (sf) building blocks, and crosslinkable units in single layers and double layers with poly(3-hexylthiophene-2,5-diyl) (P3HT) is investigated. The chemistry of the sf copolymers is systematically varied and the influence on the self-organization in bulk and thin films is examined by a combination of scattering methods. The length of the semifluorinated side chains mainly determines the degree and type of order both in bulk as well as in thin films.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

*

Present Address: POLY-CHEM GmbH, Bitterfeld-Wolfen, Germany.

Present Address: FEW Chemicals GmbH, Bitterfeld-Wolfen, Germany.

Present Address: Gustav-Adolph-Str. 36, 09116 Chemnitz, Germany, E-mail: eva.natkowki@web.de.

References

Al-Hussein, M., Berndt, A., Jehnichen, D., Häußler, L., Stamm, M., and Pospiech, D. (2016). “Structural investigation of P(BPMA/CPPHMA) and P(MMA/BPMA/CPPHMA) copolymers,” Colloid Polym. Sci. 294, 14751481.CrossRefGoogle Scholar
Appelhans, D., Wang, Z.-G., Zschoche, S., Zhuang, R.-C., Häußler, L., Friedel, P., Simon, F., Jehnichen, D., Grundke, K., Eichhorn, K.-J., Komber, H., and Voit, B. (2005). “Bulk and surface properties of maleimide copolymers: Effect of fluorinated side chains,” Macromolecules 38, 16551664.CrossRefGoogle Scholar
Beiner, M. (2001). “Relaxation in poly(alkyl methacrylate)s: Crossover region and nanophase separation,” Macromol. Rapid Commun. 22, 869895.3.0.CO;2-R>CrossRefGoogle Scholar
Beiner, M., Kabisch, O., Reichl, S., and Huth, H. (2002). “Structural and dynamic nanoheterogeneities in higher poly(alkyl methacrylate)s,” J. Non-Cryst. Solids 307–310, 658666.CrossRefGoogle Scholar
Berndt, A. (2016). “Synthese und Charakterisierung lösungsprozessierbarer und vernetzbarer Methacrylat-Copolymere für den Einsatz als Dielektrika in der organischen Elektronik,” PhD Thesis, Technische Universität Dresden, Germany. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-211995.Google Scholar
Berndt, A., Pospiech, D., Jehnichen, D., Häußler, L., Voit, B., Al-Hussein, M., Plötner, M., Kumar, A., and Fischer, W.-J. (2015). “Methacrylate copolymers with liquid crystalline side chains for organic gate dielectric applications,” ACS Appl. Mater. Interfaces 7, 1233912347.CrossRefGoogle ScholarPubMed
Chang, J.-F., Sun, B., Breiby, D. W., Nielsen, M. M., Sölling, T., Giles, M., McCulloch, I., and Sirringhaus, H. (2004). “Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents,” Chem. Mater. 16, 47724776.CrossRefGoogle Scholar
Chen, T.-A., Wu, X., and Rieke, R. D. (1995). “Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by Rieke zinc: Their characterization and solid-state properties,” J. Am. Chem. Soc. 117, 233244.CrossRefGoogle Scholar
Clark, E. S. (1999). “The molecular conformations of polytetrafluoroethylene: forms II and IV,” Polymer 40, 46594665.CrossRefGoogle Scholar
Colle, R., Grosso, G., Ronzani, A., and Zicovich-Wilson, C. M. (2011). “Structure and X-ray spectrum of crystalline poly(3-hexylthiophene) from DFT-van der Waals calculations,” Phys. Status Solidi B 248, 13601368.CrossRefGoogle Scholar
Friedel, P., Pospiech, D., Jehnichen, D., Bergmann, J., and Ober, C. K. (2000). “Polyesters with semifluorinated side chains: A proposal for the solid state structure,” J. Polym. Sci., Part B: Polym. Phys. 38 (12), 16171625.3.0.CO;2-Q>CrossRefGoogle Scholar
Gottwald, A., Pospiech, D., Jehnichen, D., Häußler, L., Friedel, P., Pionteck, J., Stamm, M., and Floudas, G. (2002). “Self-assembly and viscoelastic properties of semifluorinated polyesters,” Macromol. Chem. Phys. 203(5–6), 854861.3.0.CO;2-J>CrossRefGoogle Scholar
Hugger, S., Thomann, R., Heinzel, T., and Thurn-Albrecht, T. (2004). “Semicrystalline morphology in thin films of poly(3-hexylthiophene),” Colloid Polym. Sci. 282, 932938.Google Scholar
Ito, Y., Virkar, A. A., Mannsfeld, S., Oh, J. H., Toney, M., Locklin, J., and Bao, Z. (2009). “Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors,” J. Am. Chem. Soc. 131, 93969404.CrossRefGoogle ScholarPubMed
Jehnichen, D., Pospiech, D., Janke, A., Friedel, P., Häußler, L., Gottwald, A., Kummer, S., Kollig, W., and Grundke, K. (2001). “Bulk and surface structure of semifluorinated polyesters,” Mater. Sci. Forum 378–381(2), 378382.CrossRefGoogle Scholar
Jehnichen, D., Pospiech, D., Friedel, P., and Funari, S. S. (2011). “Semifluorinated PMMA/PSFMA diblock copolymers with multiple phase separation,” Z. Kristallogr. Proc. 1, 487492.CrossRefGoogle Scholar
Jehnichen, D., Friedel, P., Selinger, R., Korwitz, A., Wengenmayr, M., Berndt, A., and Pospiech, D. (2013). “Temperature dependant structural changes in thin films of random semifluorinated PMMA copolymers,” Powder Diffr. S2, S144S160.CrossRefGoogle Scholar
Jurchescu, O. D., Popinciuc, M., van Wees, B. J., and Palstra, T. M. (2007). “Interface-controlled, high-mobility organic transistors,” Adv. Mater. 19, 688692.CrossRefGoogle Scholar
Ma, W., Yang, C., Gong, X., Lee, K, and Heeger, A. J. (2005). “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15, 16171622.CrossRefGoogle Scholar
Miozzo, L., Yassar, A., and Horowitz, G. (2010).“Surface engineering for high performance organic electronic devices: The chemical approach,” J. Mater.Chem. 20, 25132538.CrossRefGoogle Scholar
Pospiech, D., and Jehnichen, D. (2014). “Self-organizing semifluorinated methacrylate copolymers,” Chpt. 11 in: Handbook of Fluoropolymer Science & Technology, edited by Smith, D. W. Jr., Iacono, S. T. and Iyer, S. S. (Wiley, New York), vol. 1, pp. 235290.CrossRefGoogle Scholar
Pospiech, D., Jehnichen, D., Chunsod, P., Friedel, P., Simon, F., and Grundke, K. (2016). “Structure-property relations in semifluorinated poly(methacrylate)s,” Chapt. 8 in: Fluorinated Polymers: From Fundamental to Practical Synthesis and Applications, edited by Ameduri, B. and Sawada, H. (RSC Press, Cambridge), Vol. 1, pp. 235275.Google Scholar
Sze, S. M., and Ng, K. K. (2006). Physics of Semiconductor Devices (Wiley & Sons, Hoboken), 3rd ed.CrossRefGoogle Scholar
Tsuwi, J., Pospiech, D., Jehnichen, D., Häußler, L., and Kremer, F. (2007). “Molecular dynamics in semifluorinated side-chain polysulfone studied by broadband dielectric spectroscopy,” J. Appl. Polym. Sci. 105 (1), 201207.CrossRefGoogle Scholar
Veres, J., Ogier, S., and Lloyd, G. (2004). “Gate insulators in organic field-effect transistors,” Chem. Mater. 16, 45434555.CrossRefGoogle Scholar
Wu, P.-T., Xin, H., Kim, F. S., Ren, G., and Jenekhe, S. A. (2009). “Regioregular poly(3-pentylthiophene): Synthesis, self-assembly of nanowires, high-mobility field-effect transistors, and efficient photovoltaic cells,” Macromolecules 42, 88178826.CrossRefGoogle Scholar
Xiao, M., Zhang, X., Bryan, Z. J., Jasensky, J., McNeil, A. J., and Chen, Z. (2015). “Effect of solvent on surface ordering of poly(3-hexylthiophene) thin films,” Langmuir 31, 50505056.CrossRefGoogle ScholarPubMed
Yamamoto, T., and Hara, T. (1982). “X-ray diffraction study of crystal transformation and molecular disorder in poly(tetrafluoroethylene),” Polymer 23, 521528.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 8
Total number of PDF views: 38 *
View data table for this chart

* Views captured on Cambridge Core between 25th July 2019 - 20th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

X-ray characterization of crosslinked methacrylate copolymers for application as dielectric layers in organic electronics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

X-ray characterization of crosslinked methacrylate copolymers for application as dielectric layers in organic electronics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

X-ray characterization of crosslinked methacrylate copolymers for application as dielectric layers in organic electronics
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *