Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-24T03:12:52.468Z Has data issue: false hasContentIssue false

Preparation of Bi4Te3 highly oriented nanopillars array film with enhanced electrical properties

Published online by Cambridge University Press:  12 April 2018

Jing Wu
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, WaiHuan Xi Road, No. 100, Guangzhou 510006, China
Jikang Jian*
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, WaiHuan Xi Road, No. 100, Guangzhou 510006, China
Shufang Wang
Hebei Key Lab of Optic-Electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002, China
Shuang Guo
Hebei Key Lab of Optic-Electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002, China
Renbo Lei
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, WaiHuan Xi Road, No. 100, Guangzhou 510006, China
Haitao Liu
Department of Physics, Xinjiang University, Urumqi 830046, Xinjiang, China
a)Author to whom correspondence should be addressed. Electronic mail:


The Bi4Te3 films with well-ordered orientation and microstructure were successfully prepared on SiO2 substrate by a vacuum thermal evaporation deposition technique for the first time. We discussed the effects of evaporation temperature and substrate temperature on the phase and its well-ordered growth of Bi4Te3 films. The formation of Bi4Te3 phase is owing to the differences of the saturated vapor pressure. The thermoelectric transport properties of the Bi4Te3 films were investigated and the (00l)-oriented nanopillars array film has a better electrical transport performance, whose value of PF is 0.032 mWm−1 K−2 at 339 K, approaching twice that of the non-oriented ordinary film. The enhanced electrical properties of Bi4Te3 films could be achieved via the high-crystallinity well-controlled (00l)-oriented nanopillars array.

Technical Article
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alama, H., and Ramakrishna, S. (2013). “A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials,” Nano Energy 2, 190212.Google Scholar
Bashir, M. B. A., Said, S. M., Sabri, M. F. M., Shnawah, D. A., and Elsheikh, M. H. (2014). “Recent advances on Mg2Si1−xSnx materials for thermoelectric generation,” Renew. Sustain. Energy Rev. 37, 569584.Google Scholar
Bejenari, I., and Kantser, V. (2008). “Thermoelectric properties of bismuth telluride nanowires in the constant relaxation-time approximation,” Phys. Rev. B 78, 115322.Google Scholar
Bell, L. E. (2008). “Cooling, heating, generating power, and recovering waste heat with thermoelectric system,” Science 321, 14571461.Google Scholar
Bos, J. W. G., Zandbergen, H. W., Lee, M. H., Ong, N. P., and Cava, R. J. (2007). “Structure and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n,” Phys. Rev. B 75, 195203.Google Scholar
Bos, J. W. G., Faucheux, F., Downie, R. A., and Marcinkova, A. (2012). “Phase stability, structures and properties of the (Bi2)m (Bi2Te3)n natural superlattices,” J. Solid State Chem. 193, 1318.CrossRefGoogle Scholar
Boukai, A. I., Bunimovich, Y., Tahir-Kheli, J., Yu, J. K., Goddard, W. A. III., and Heath, J. R. (2008). “Silicon nanowires as efficient thermoelectric materials,” Nature 451, 168171.Google Scholar
Boulouz, A., Giani, A., Pascal-Delannoy, F., Boulouz, M., Foucaran, A., and Boyer, A. (1998). “Preparation and characterization of MOCVD bismuth telluride thin films,” J. Crystal Growth 194, 336341.Google Scholar
Chen, T. H., Lin, P. Y., Chang, H. C., and Chen, C. H. (2017). “Enhanced thermoelectricity of three-dimensionally mesostructured BixSb2−xTe3 nanoassemblies: from micro-scaled open gaps to isolated sealed mesopores,” Nanoscale 9, 32833292.Google Scholar
Chen, X. L., Lan, Y. C., Li, J. Y., Cao, Y. G., and He, M. (2001a). “Radial growth dynamics of nanowires,” J. Crystal Growth 222, 586590.CrossRefGoogle Scholar
Chen, X. L., Li, J. Y., Lan, Y. C., and Cao, Y. G. (2001b). “Morphological stability of a nanowire during growth process,” Mod. Phys. Lett. B 15, 2731.CrossRefGoogle Scholar
Dehkordi, A. M., Zebarjadi, M., He, J., and Tritt, T. M. (2015). “Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials,” Mater. Sci. Eng. R 97, 122.Google Scholar
Freeman, R. D., and Edwards, J. G. (1967). The Characterization of High Temperature Vapors (Wiley, New York), p. 508.Google Scholar
Fülöp, A., Song, Y. X., Charpentier, S., Shi, P. X., Ekström, M., Galletti, L., Arpaia, R., Bauch, T., Lombardi, F., and Wang, S. M. (2014). “Phase transition of bismuth telluride thin films grown by MBE,” Appl. Phys. Express 7, 045503.Google Scholar
Goldsmid, H. J. (2016). Introduction to Thermoelectricity (Springer, Berlin), 2nd ed., p. 37.Google Scholar
He, W., Zhang, G., Zhang, X. X., Ji, J., Li, G. Q., and Zhao, X. D. (2015). “Recent development and application of thermoelectric generator and cooler,” Appl. Energy 143, 125.Google Scholar
Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., and Snyder, G. J. (2008). “Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states,” Science 321, 554557.Google Scholar
Hirahara, T., Bihlmayer, G., Sakamoto, Y., Yamada, M., Miyazaki, H., Kimura, S. I., Blügel, S., and Hasegawa, S. J. (2011). “Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te3,” Phys. Rev. Lett. 107, 166801.Google Scholar
Honig, R. E., and Kramer, R. A. (1969). “Vapor pressure date for solid and liquid elements,” RCA Rev. 30, 285305.Google Scholar
Kashchiev, D. (1977). “Growth kinetics of dislocation-free interfaces and growth mode of thin films,” J. Crystal Growth 40, 2946.Google Scholar
Kuznetsov, P. I., Yapaskurt, V. O., Shchamkhalova, B. S., Shcherbakov, V. D., Yakushcheva, G. G., Luzanov, V. A., and Jitov, V. A. (2016). “Growth of Bi2Te3 films and other phases of Bi-Te system by MOVPE,” J. Crystal Growth 455, 122128.Google Scholar
Li, S. H., Toprak, M. S., Soliman, H. M. A., Zhou, J., Muhammed, M., Platzek, D., and Müller, E. (2006). “Fabrication of nanostructured thermoelectric bismuth telluride thick films by electrochemical deposition,” Chem. Mater. 18, 36273633.Google Scholar
Lin, Y. M., Sun, X. Z., and Dresselhaus, M. S. (2000). “Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires,” Phys. Rev. B 62, 46104623.Google Scholar
Loa, I., Bos, J. W. G., Downie, R. A., and Syassen, K. (2016). “Atomic ordering in cubic bismuth telluride alloy phases at high pressure,” Phys. Rev. B 93, 224109.Google Scholar
Lotgering, F. K. (1959). “Topotactical reactions with ferromagnetic oxides having hexagonal crystal structure,” J. Inorg. Nucl. Chem. 9, 113123.Google Scholar
Makala, R. S., Jagannadham, K., and Sales, B. C. (2003). “Pulsed laser deposition of Bi2Te3-based thermoelectric thin films,” J. Appl. Phys. 94, 39073918.Google Scholar
Montgomery, D. S. (1983). “Disorder scattering and electron mobility in Hg1−xCdxTe,” J. Phy. C: Solid State Phys. 16, 29232934.Google Scholar
Mu, X., Zhou, H. Y., He, D. Q., Zhou, W. Y., Wei, P., Zhu, W. T., Nie, X. L., Liu, H. J., and Zhang, Q. J. (2017). “Enhanced electrical properties of stoichiometric Bi0.5Sb1.5Te3 films with high-crystallinity via layer-by-layer in-situ growth,” Nano Energy 33, 5564.Google Scholar
Prevey, P. S. (2000). “X-ray diffraction characterization of crystallinity and phase composition in plasma-sprayed hydroxyapatite coatings,” J. Therm. Spray Technol. 9, 369376.Google Scholar
Rostek, R. (2015). “A review of electroplating for V–VI thermoelectric films: from synthesis to device integration,” J. Mater. Res. 30, 25182543.CrossRefGoogle Scholar
Song, M. S., and Kim, Y. (2014). “Fletching-shaped Bi4Te3-ZnTe heterostructure nanowires,” Nanotechnology 25, 505605.Google Scholar
Su, X. L., Wei, P., Li, H., Liu, W., Yan, Y. G., Li, P., Su, C. Q., Xie, C. J., Zhao, W. Y., Zhai, P. C., Zhang, Q. J., Tang, X. F., and Uher, C. (2017). “Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation, and applications,” Adv. Mater. 29, 1602013.Google Scholar
Tan, G. J., Zhao, L. D., and Kanatzidis, M. G. (2016). “Rationally designing high-performance bulk thermoelectric materials,” Chem. Rev. 116, 1212312149.Google Scholar
Tan, M., Deng, Y., and Wang, Y. (2014). “Ordered structure and high thermoelectric properties of Bi2(Te,Se)3 nanowire array,” Nano Energy 3, 144151.Google Scholar
Wang, G., Lok, S. K., Wong, G. K. L., and Sou, I. K. (2009). “Molecular beam epitaxy-grown nanowires,” Appl. Phys. Lett. 95, 263102.Google Scholar
Wang, H. F., and Wu, Z. Q. (1990). Solid Physical Experiment Method (Higher Education Press, Beijing).Google Scholar
Wang, R. Y., Feser, J. P., Lee, J. S., Talapin, D. V., Segalman, R., and Majumdar, A. (2008). “Enhanced thermopower in PbSe nanocrystal quantum dot superlattices,” Nano Lett. 8, 22832288.Google Scholar
Xu, H., Song, Y. X., Pan, W. W., Chen, Q. M., Wu, X. Y., Lu, P. F., Gong, Q., and Wang, S. M. (2015). “Vibrational properties of epitaxial Bi4Te3 films as studied by Raman spectroscopy,” AIP Adv. 5, 087103.Google Scholar
Yin, Y., Zhang, Y. M., Gao, T. L., Yao, T., Zhang, X. H., Han, J. C., Wang, X. J., Zhang, Z. H., Xu, P., Zhang, P., Cao, X. Z. H., Song, B., and Jin, S. (2017). “Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction,” Adv. Mater. 29, 1700311.CrossRefGoogle Scholar
Zhu, H. T., Luo, J., and Liang, J. K. (2014). “Synthesis of highly crystalline Bi2Te3 nanotubes and their enhanced thermoelectric properties,” J. Mater. Chem. A 2, 1282112826.Google Scholar
Zhu, T. J., Hu, L. P., Zhao, X. B., and He, J. (2016). “New insights into intrinsic point defects in V2VI3 thermoelectric materials,” Adv. Sci. 3, 160004.Google Scholar