Skip to main content Accessibility help
×
Home

Powder X-ray structural studies and reference diffraction patterns for three forms of porous aluminum terephthalate, MIL-53(A1)

Published online by Cambridge University Press:  27 June 2019


W. Wong-Ng
Affiliation:
Materials Measurement Science Division, National Institution of Standards and Technology, Gaithersburg, MD 20899, USA
H. G. Nguyen
Affiliation:
Chemical Science Division, National Institution of Standards and Technology, Gaithersburg, MD 20899, USA
L. Espinal
Affiliation:
Materials Measurement Science Division, National Institution of Standards and Technology, Gaithersburg, MD 20899, USA
D. W. Siderius
Affiliation:
Chemical Science Division, National Institution of Standards and Technology, Gaithersburg, MD 20899, USA
J. A. Kaduk
Affiliation:
Department of Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
Corresponding
E-mail address:

Abstract

Powder X-ray diffraction patterns for three forms of MIL-53(Al), a metal organic framework (MOF) compound with breathing characteristics, were investigated using the Rietveld refinement method. These three samples are referred to as the MIL-53(Al)as-syn (the as synthesized sample), orthorhombic, Pnma, a = 17.064(2) Å, b = 6.6069(9) Å, c = 12.1636(13) Å, V = 1371.3(2) Å3, Z = 4), MIL-53(Al)LT-H (low-temperature hydrated phase, monoclinic P21/c, a = 19.4993(8) Å, b = 15.2347(6) Å, c = 6.5687(3) Å, β = 104.219(4) °, V = 1891.55(10) Å3, Z = 8), and MIL-53(Al)HT-D (high-temperature dehydrated phase, Imma, a = 6.6324(5) Å, b = 16.736(2) Å, c = 12.840(2), V = 1425.2(2) Å3, Z = 4). The crystal structures of the “as-syn” sample and the HT-D sample are confirmed to be the commonly adopted ones. However, the structure of the MIL-53(Al)LT-H phase is confirmed to be monoclinic with a space group of P21/c instead of the commonly accepted space group Cc, resulting in a cell volume double in size. The structure has two slightly different types of channel. The pore volumes and pore surface area were estimated to be 0.11766 (8) cm3/g and 1461.3(10) m2/g for MIL-53(Al)HT-D (high-temperature dehydrated phase), and 0.08628 (5) cm3/g and 1401.6 (10) m2/g for MIL-53(Al)as-syn phases, respectively. The powder patterns for the MIL-53(Al)as-syn and MIL-53(Al)HT-D phases are reported in this paper.


Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Ahnfeldt, T., Gunzelmann, D., Loiseau, D., Hirsemann, T., Senker, J., Férey, G., and Stock, N. (2009). “Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology,” Inorg. Chem. 48(7), 3057.CrossRefGoogle ScholarPubMed
Alhamami, M., Doan, H., and Cheng, C.-H. (2014). “A review of breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption,” Materials. (Basel) 7, 31983250.CrossRefGoogle ScholarPubMed
Bloch, E. D., Hudson, M. R., Mason, J. A., Queen, W. L., Zadrozny, J. M., Chavan, S., Bordiga, S., Brown, C. M., and Long, J. R. (2014). “Reversible CO binding enables tunable CO/H2 and CO/N2 separations in metal-organic frameworks with exposed divalent metal cations,” J. Am. Chem. Soc. 136(30), 1075210761.CrossRefGoogle ScholarPubMed
Bondi, A. (1964). “van der Waals volumes and radii,” J. Phys. Chem. 68(3), 441451.CrossRefGoogle Scholar
Bourrelly, S., Llewellyn, P. L., Serre, C., Millange, F., Loiseau, T., and Férey, G. (2005). “Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47,” J. Am. Chem. Soc. 127, 1351913521.CrossRefGoogle ScholarPubMed
Bourrelly, S., Serre, C., Vimont, A., Ramsahye, N. A., Maurin, G., Daturi, M., Filinehuk, Y., Férey, G., and Llewellyn, P. L. (2007). “A multidisciplary approach to understanding sorption induced breathing in the metal organic framework MIL53(Cr),” in Zeolites to Porous Materials-The 40th Anniversary of International Zeolite Conference, edited by Xu, R., Gao, Z., Chen, J. and Yan, W. (Elsevier Science, Amsterdam), pp. 10081014.CrossRefGoogle Scholar
Britt, D., Furukawa, H., Wang, B., Glover, T. G., and Yaghi, O. M. (2009). “Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites,” Proc. Natl. Acad. Sci. 106(49), 2063720640.CrossRefGoogle ScholarPubMed
Carrington, E. J., Vitórica-Yrezábal, I. J., and Brammer, L. (2014). “Crystallographic studies of gas sorption in metal-organic frameworks,” Acta Cryst. B70, 404422.Google Scholar
Caskey, S. R., Wong-Foy, A. G., and Matzger, A. J. (2008). “Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores,” J. Am. Chem. Soc. 130, 1087010871.CrossRefGoogle Scholar
Chen, R., Yao, J., Gu, Q., Smeets, S., Barlocher, C., Gu, H., Zhu, D., Morris, W., Yaghi, O. M., and Wang, H. (2013). “A Two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption,” Chem. Commun. 49, 95009502.CrossRefGoogle ScholarPubMed
Choi, S., Drese, J., and Jones, C. W. (2009). “Absorbent materials for carbon dioxide capture from large anthropogenic point source,” ChemSusChem. 2(9), 796854.CrossRefGoogle Scholar
Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G., and Williams, I. D. (1999). “A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n,” Science 283, 1148.CrossRefGoogle Scholar
Cockayne, E. (2017). “Thermodynamics of the flexible metal-organic framework materials MIL-53(Cr) from first principles,” J. Phys. Chem. 121, 43124317.Google ScholarPubMed
Dey, C., Kundu, T., Biswal, B. P., Mallick, A., and Banerjee, R. (2014). “Crystalline metal-organic frameworks (MOFs): synthesis, structure and function,” Acta Cryst. B70, 310.Google Scholar
Duren, T., Millange, F., Ferey, G., Walton, K. S., and Snurr, R. Q. (2007). “Calculating geometric surface areas as a characterization tool for metal–organic frameworks,” J. Phys. Chem. C 111, 15350.2018.CrossRefGoogle Scholar
Espinal, L., Wong-Ng, W., Kaduk, J. A., Allen, A. J., Snyder, C. R., Chiu, C., Siderius, D. W., Li, L., Cockayne, E., Espinal, A. E., and Suib, S. L. (2012). “Time dependent CO2 sorption hysteresis in a one-dimensional microporous octahedral molecular sieve,” J. Amer. Chem. Soc. 134(18), 79447951.CrossRefGoogle Scholar
Feng, D., Gu, Z.-Y., Chen, Y.-P., Park, J., Wei, Z., Sun, Y., Bosch, M., Yuan, S., and Zhou, H.-C. (2014a). “A highly stable porphyrinic zirconium metal-organic framework with shp-a topology,” J. Am. Chem. Soc. 136, 1771417717.CrossRefGoogle Scholar
Feng, D., Wang, K., Su, J., Liu, T.-F., Park, J., Wei, Z., Bosch, M., Yakovenko, A., Zou, X., and Zhou, H.-C. (2014b). “A highly stable zeotype mesoporous zirconium metal-organic framework with ultralarge pores,” Angew. Chem. Int. Ed., 54(1), 149154.CrossRefGoogle Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Cryst. 27, 892900.CrossRefGoogle Scholar
Frost, H., Duren, T., and Snurr, R. Q. (2006). “Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal–organic frameworks,” J. Phys. Chem. B 110, 9565.CrossRefGoogle ScholarPubMed
Furukawa, H., Cordova, K. E., O'Keeffe, M., and Yaghi, O. M. (2013). “The chemistry and applications of metal-organic frameworks,” Science 341, 1230444–11230444-12.CrossRefGoogle ScholarPubMed
Gao, W.-Y., Chrzanowski, M., and Ma, S. (2014). “Metal-metalloporphyrin frameworks: resurging class of functional materials,” Chem. Soc. Rev. 43, 58415866.CrossRefGoogle ScholarPubMed
Gelb, L. D., and Gubbins, K. E. (1999). “Pore size distributions in porous glasses: a computer simulation study,” Langmuir 15(2), 305308.CrossRefGoogle Scholar
Kauffman, K. L., Culp, J. T., Allen, A. J., Espinal-Thielen, L., Wong-Ng, W., Brown, T. D., Goodman, A., Bernardo, M. P., Pancoast, R. J., Chirdon, D., and Matranga, C. (2011). “Selective adsorption of CO2 from light gas mixtures using a structurally dynamic porous coordination polymer,” Angew Chem. Int. Ed. 50, 1088810892.CrossRefGoogle ScholarPubMed
Larson, A. C., and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos, USA: Los Alamos National Laboratory.Google Scholar
Leynaud, O., Barnes, P., and Férey, G. (2007). “An explanation for the very large breathing effect of a metal-organic framework during CO2 adsorption,” Adv. Mater. 19, 22462251.Google Scholar
Liu, E., Her, J.-H., Dailly, A., Ramirez-Cuesta, A. J., Neumann, D. A., and Brown, C. M. (2008). “Reversible structural transition in MIL-53 with large temperature hysteresis,” J. Am. Chem. Soc. 130, 1181311818.CrossRefGoogle ScholarPubMed
Liu, Y., Wang, Z. U., and Zhou, H.-C. (2012). “Recent advances in carbon dioxide capture with metal-organic frameworks,” Greenhouse Gas Sci Technol. 2, 239259.CrossRefGoogle Scholar
Llewellyn, P. L., Maurin, G., Devic, T., Lorea-Serna, S., Rosenbach, N., Serre, C., Bourrelly, S.; Horeajada, P., Filinchuk, Y., and Ferey, G. (2008). “Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation,” J. Am. Chem. Soc. 130, 1280812814.CrossRefGoogle ScholarPubMed
Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., and Ferey, G. (2004). “A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration,” J. Chem-Eur. 10, 13731382.CrossRefGoogle ScholarPubMed
Meng, L., Cheng, Q., Kim, C., Gao, W.-Y., Wojtas, L., Cheng, Y.-S., Zaworotko, M. J., Zhang, X. P., and Ma, S. (2012). “Crystal engineering of a microporous, catalytically active fcu topology MOF using a custom-designed metalloporphyrin linker,” Angew Chem. Int. Ed. 51, 1008210085.CrossRefGoogle ScholarPubMed
Morris, R. E., and Wheatley, P. S. (2008). “Gas storage in nanoporous materials,” Angew. Chem. Int. Ed. 47, 49664981.CrossRefGoogle ScholarPubMed
Mounfield, W. P. III, and Walton, K. S. (2015). “Effect of synthesis solvent on the breathing behavior of MIL-53 (Al),” J. Colloid and Interface Sci. 447, 3339.CrossRefGoogle Scholar
Ortiz, G, Chaplais, G., Paillaud, J.-L., Nouali, H., Pataron, J., Raya, J., and Marichal, C. (2014). “New insights into the hydrogen bond network in Al-MIL53 and Ga-MIL-53,” J. Phy. Chem. 118, 22-21-22029.Google Scholar
Palmer, J. C., Moore, J. D., Brennan, J. K., and Gubbins, K. E. (2011). “Simulating local adsorption isotherms in structurally complex porous materials: a direct assessment of the slit pore model,” J. Phys. Chem. Lett., 2(3), 165169.CrossRefGoogle Scholar
PDF4+ (Database, 2019), edited by Dr. Soorya Kabekkodu, International Centre for Diffraction Data, Newtown Square, PA, 19073-3273, USA.Google Scholar
Potoff, J. J., and Siepmann, J. I. (2001). “Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide and nitrogen,” AIChE J. 47, 16761682.CrossRefGoogle Scholar
Queen, W. L., Hudson, M. R., Bloch, E. D. J. A., Gonzalez, M. L., Lee, J. S., Gygi, D., Howe, J. D., Lee, K., Darwish, T. A., James, M., Peterson, V. K., Teat, S. J., Smit, B., Neaton, J. B., Long, J. R., and Brown, C. M. (2014). “Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc) (M=Mg, Mn, Fe, Co, Ni, Cu, Zn),” Chem. Sci. 5, 45694581.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Rowland, R. S., and Taylor, R. (1996). “Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii,” J. Phys. Chem., 100(18), 73847391.CrossRefGoogle Scholar
Rowsell, J. L. C., and Yaghi, O. M. (2004). “Metal-organic frameworks: a New class of porous materials,” Microporous Mesoporous Mater. 73, 314.CrossRefGoogle Scholar
Seoane, B., Sorribas, S., Mayoral, A., Tellez, C, and Coronas, J. (2015). “Real-time monitoring of breathing of MIL-53(Al) by environmental SEM,” Microporous Mesoporous Mater. 203, 1723.CrossRefGoogle Scholar
Serre, C., Millange, F., Thouvenot, C., Nogues, M., Marsolier, G., Louër, D., and Férey, G. (2002). “Very large breathing effect in the first nanoporous chromium (III)-based solids: MIL-53 or CrIII(OH)·{O2C-C6H4-CO2}·{HO2C- C6H4- CO2H}x·H2Oy,” J. Am. Chem. Soc. 124, 1351913526.CrossRefGoogle Scholar
Serre, C., Bourrelly, S., Vimont, A., Ramsahye, N., Maurin, G., Llewellyn, M. D., Filinchuk, Y., and Skoulidas, A. I. (2004). “Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC,” J. Am Chem. Soc. 126, 13561357.Google Scholar
Stephens, P. W. (1999). “Microstrain broadening,” J. Appl. Crystallogr. 32, 281289.CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from A12O3,” J. Appl. Cryst. 20, 7983.CrossRefGoogle Scholar
Tranchemontagne, D. J., Hunt, J. R., and Yaghi, O. M. (2008). “Room temperature synthesis of metal-organic framework: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0,” Tetrahedron 64, 85538557.CrossRefGoogle Scholar
Vimont, A., Travert, A., Bazin, P., Lavalley, J.-C., Daturi, M., Serre, C., Férey, G., Bourrelly, S., and Llewellyn, P. L. (2007). “Evidence of CO2 molecule acting as an electron acceptor on a nanoporous metal-organic-framework MIL-53 or Cr3+(OH)(O2C-C6H4-CO2),” Chem. Commun. 2007, 32913293.CrossRefGoogle Scholar
Walton, K. S., and Snurr, R. Q. (2007). “Applicability of the BET method for determining surface areas of microporous metal–organic frameworks,” J. Am. Chem. Soc. 129, 8552.CrossRefGoogle ScholarPubMed
Wang, Q. M., Shen, D., Bülow, M., Lau, M. L., Deng, S., Fitch, F. R., Lemcoff, N. O., and Semanscin, J. (2002). “Metallo-organic molecular sieve for gas separation and purification,” Microporous Mesoporous Mater. 55, 217230.CrossRefGoogle Scholar
Wong-Ng, W., McMurdie, H. F., Hubbard, C. R., and Mighell, A. D. (2001). “JCPDS-ICDD research associateship (cooperative program with NBS/NIST),” J. Res Natl Inst Stand Technol. 106(6), 10131028.CrossRefGoogle Scholar
Wong-Ng, W., Kaduk, J. A., Espinal, L., Suchomel, M., Allen, A. J., and Wu, H. (2011). “High- resolution synchrotron X-ray diffraction study of Bis(2-methylimidazolyl)-Zinc, C8H10N4Zn (ZIF-8),” Powd Diffr. 26, 234.CrossRefGoogle Scholar
Wong-Ng, W., Kaduk, J. A., Wu, H., and Suchomel, M. (2012). “Synchrotron X-ray studies of metal-organic framework M2(2,5-dihydroxyterephthalte), M=(Mn,Co,Ni,Zn) (MOF74),” Powd. Diffr. 27(4), 256262.CrossRefGoogle Scholar
Wong-Ng, W., Culp, J. T., Chen, Y. S., Zavalij, P., Espinal, L., Siderius, D. W., Allen, A. J., Scheins, S., and Matranga, C. (2013). “Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4],” CrystEngComm 15, 46844693.CrossRefGoogle Scholar
Wong-Ng, W., Kaduk, J. A., Siderius, D. L., Allen, A. L., Espinal, L., Boyerinas, B. M., Levin, I., Suchomel, M. R., Ilavsky, J., Li, L., Williamson, I.; Cockayne, E., and Wu, H. (2015). “Reference diffraction patterns, microstructure, and pore size distribution for the copper (II) benzene-1,3,5-tricarboxylate metal organic framework (Cu-BTC) compounds,” Powd. Diffr. 30(1), 213.CrossRefGoogle Scholar
Wong-Ng, W., Williamson, I., Lawson, M., Siderius, D. W., Culp, J. T., Chen, Y-S., and Li, L. (2018). “Electronic structure, pore size distribution, and sorption characterization of an unusual MOF, {[Ni(dpbz)][Ni(CN)4]}n, dpbz=1,4-bis(4-pyridyl)benzene,” J. Appl. Phys. 123, 245104.CrossRefGoogle Scholar
Wu, H., Simmons, J. M., Srinivas, G., Zhou, W., and Yildirim, T. (2010). “Adsorption sites and binding nature of CO2 in prototypical metal-organic frameworks-A combined neutron diffraction and first-principles study,” J. Phys. Chem. Lett. 1, 19461951.CrossRefGoogle Scholar
Yaghi, O. M., and Li, Q. (2009). “Reticular chemistry and metal-organic frameworks for clean energy,” MRS Bull. 34, 682690.CrossRefGoogle Scholar
Zhou, H. C., and Kitagawa, S. (2014). “Metal–organic frameworks (MOFs),” Chem. Soc. Rev. 43, 54155418.CrossRefGoogle Scholar

Wong-Ng et al. supplementary material

Wong-Ng et al. supplementary material 1

[Opens in a new window]
File 2 KB

Wong-Ng et al. supplementary material

Wong-Ng et al. supplementary material 2

[Opens in a new window]
File 262 KB

Wong-Ng et al. supplementary material

Wong-Ng et al. supplementary material 3

[Opens in a new window]
File 626 KB

Wong-Ng et al. supplementary material

Wong-Ng et al. supplementary material 4

[Opens in a new window]
File 4 MB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 22
Total number of PDF views: 87 *
View data table for this chart

* Views captured on Cambridge Core between 27th June 2019 - 5th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-zcwv2 Total loading time: 0.68 Render date: 2020-12-05T06:56:50.322Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 06:00:11 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Powder X-ray structural studies and reference diffraction patterns for three forms of porous aluminum terephthalate, MIL-53(A1)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Powder X-ray structural studies and reference diffraction patterns for three forms of porous aluminum terephthalate, MIL-53(A1)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Powder X-ray structural studies and reference diffraction patterns for three forms of porous aluminum terephthalate, MIL-53(A1)
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *