Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-8p2q5 Total loading time: 20.07 Render date: 2021-04-15T07:07:19.765Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Magnetic properties and crystal structure of Ga2−xFexO3

Published online by Cambridge University Press:  25 May 2018

Hui Yan
Affiliation:
Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Yuanqi Huang
Affiliation:
Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Wei Cui
Affiliation:
Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Yusong Zhi
Affiliation:
Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Daoyou Guo
Affiliation:
Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Zhenping Wu
Affiliation:
Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Zhengwei Chen
Affiliation:
Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Weihua Tang
Affiliation:
Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Corresponding

Abstract

Ga2−xFexO3 (GFO) bulks with x from 0.7 to 1.3 have been fabricated using the classic solid-state route. The structural, optical, and magnetic properties have been investigated systematically. X-ray diffraction spectra and FULLPROF profile fitting indicate that GFO bulks belong to the orthorhombic structure with the space group Pc21n. Phase separation appears at the Fe content of x = 1.3. The optical bandgap decreases almost linearly with the increase of iron content, which means that the bandgap of GFO bulks can be controlled by adjusting the Fe content in the samples. The magnetic property measurements suggest that GFO is ferromagnetic, and the magnetic properties are enhanced compared with other reported works, exhibiting the application in ferromagnetic semiconductors devices.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Abrahams, S. C., Reddy, J. M., and Bernstein, J. L. (1965). “Crystal structure of piezoelectric ferromagnetic gallium iron oxide,” J. Chem. Phys. 42, 39573968.CrossRefGoogle Scholar
Arima, T., Higashiyama, D., Kaneko, Y., He, J. P., Goto, T., and Miyasaka, S. (2004). “Structural and magnetoelectric properties of Ga2−xFexO3, single crystals grown by a floating-zone method,” Phys. Rev. B 70, 064426.CrossRefGoogle Scholar
Atanelov, J. and Mohn, P. (2015). “Electronic and magnetic properties of GaFeO3: ab initio calculations for varying Fe/Ga ratio, inner cationic site disorder, and epitaxial strain,” Phys. Rev. B 92, 104408.CrossRefGoogle Scholar
Frankel, R. B., Blum, N. A., and Foner, S. (1965) “Ferrimagnetic structure of magnetoelectric Ga2−xFexO3,” Phys. Rev. Lett. 15, 958960.CrossRefGoogle Scholar
Guo, D. Y., Wu, Z. P., Li, P. G., Wang, Q. J., Lei, M., Li, L. H., and Tang, W. H. (2015a). “Magnetic anisotropy and deep ultraviolet photoresponse characteristics in Ga2O3: Cr vermicular nanowire thin film nanostructure,” RSC Adv. 5, 1289412898.CrossRefGoogle Scholar
Guo, D. Y., Wu, Z. P., An, Y. H., Li, P. G., Wang, P. C., Chu, X. L., Guo, X. L., Zhi, Y. S., Lei, M., Li, L. H., and Tang, W. H. (2015b). “Unipolar resistive switching behavior of amorphous gallium oxide thin films for nonvolatile memory applications,” Appl. Phys. Lett. 106, 042105.CrossRefGoogle Scholar
Guo, D. Y., Wu, Z. P., Zhang, L. J., Yang, T., Hu, Q. R., Lei, M., Li, P. G., Li, L. H., and Tang, W. H. (2015c). “Abnormal bipolar resistive switching behavior in a Pt/GaO1.3/Pt structure,” Appl. Phys. Lett. 97, 032104.CrossRefGoogle Scholar
Guo, D. Y., An, Y. H., Cui, W., Zhi, Y. S., Zhao, X. L., Lei, M., Li, L. H., Li, P. G., Wu, Z. P., and Tang, W. H. (2016). “Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1–xFex)2O3 multilayer thin films,” Sci. Rep. 6, 25166.CrossRefGoogle ScholarPubMed
Han, M. J., Ozaki, T., and Yu, J. (2007). “Magnetic ordering and exchange interactions in multiferroic GaFeO3,” Phys. Rev. B 75, 794802.CrossRefGoogle Scholar
Han, T. C., Chen, T. Y., and Lee, Y. C. (2013). “Grain size effect on site-disorder and magnetic properties of multiferroic GaFeO3 nanoparticles,” Appl. Phys. Lett. 103, 232405.CrossRefGoogle Scholar
Kalashnikova, A. M., Pisarev, R. V., Bezmaternykh, L. N., Temerov, V. L., Kirilyuk, A., and Rasing, T. (2005). “Optical and magneto-optical studies of a multiferroic GaFeO3, with a high Curie temperature,” Exp. Theor. Phys. 81, 452457.CrossRefGoogle Scholar
Kaneko, K., Kakeya, I., Komori, S., and Fujita, S. (2013). “Band gap and function engineering for novel functional alloy semiconductors: bloomed as magnetic properties at room temperature with α-(GaFe)2O3,” J. Appl. Phys. 113, 233901.CrossRefGoogle Scholar
Kotsikau, D. and Ivanovskaya, M. (2015). “Influence of structure of Fe2O3-In2O3 nanocomposites on the sensitivity of thin-film sensors on their base,” Mater. Chem. Phys. 160, 337344.CrossRefGoogle Scholar
Levine, B. F., Nowlin, C. H., and Jones, R. V. (1968). “Magnetic properties of Ga2−xFexO3,” Phys. Rev. 174, 571582.CrossRefGoogle Scholar
Li, H., Bao, H. Q., Song, B., Wang, W. J., and Chen, X. L. (2008). “Observation of ferromagnetic ordering in Ni-doped AlN polycrystalline powders,” Solid State Commun. 148, 406409.CrossRefGoogle Scholar
Liu, Y., Wang, G., Wang, S., Yang, J., Chen, L., Qin, X., Song, B., Wang, B., and Chen, X. (2011). “Defect-induced magnetism in neutron irradiated 6 H-SiC single crystals,” Phys. Rev. Lett. 106, 087205.CrossRefGoogle Scholar
Muhler, M., Schuetze, J., Wesemann, M., Rayment, T., Dent, A., and Schloegl, R. (1990). “Cheminform abstract: the nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene. Part 1. Solid-state chemistry and bulk characterization,” J. Catal. 126, 339360.CrossRefGoogle Scholar
Mukhopadhyay, K., Mahapatra, A. S., and Chakrabarti, P. K. (2014). “Enhanced magneto-electric property of GaFeO3 in Ga(1−x)ZnxFeO3 (x = 0, 0.05, 0.10),” Physica B 448, 214218.CrossRefGoogle Scholar
Naik, V. B. and Mahendiran, R. (2011). “Magnetic and magneto absorption studies in multiferroic nanoparticles,” IEEE Trans. Magn. 47, 37763779.CrossRefGoogle Scholar
Remeika, J. P. (1960). “GaFeO3: a ferromagnetic-piezoelectric compound,” J. Appl. Phys. 31, S263S264.CrossRefGoogle Scholar
Roulland, F., Lefevre, C., Thomasson, A., and Viart, N. (2013). “Study of Ga(2−x)FexO3 solid solution: optimisation of the ceramic processing,” J. Eur. Ceram. Soc. 33, 10291035.CrossRefGoogle Scholar
Scott, J. F., Ross, F. M., Araujo, C., Scott, M. C., and Huffman, M. (1996). “Structure and device characteristics of SrBi2Ta2O9-based nonvolatile random-access memories,” MRS Bull. 21, 3339.CrossRefGoogle Scholar
Sharma, K., Raghavendra, R. V., Gupta, A., Banerjee, A., and Awasthi, A. M. (2013). “Magnetic and 57Fe Mössbauer study of magneto-electric GaFeO3 prepared by the sol-gel route,” J. Phys. Condens. Matter 25, 076002.CrossRefGoogle ScholarPubMed
Singh, S., Dey, P., Roy, J., and Mandal, S. (2014). “Enhancement of dielectric constant in transition metal doped ZnO nanocrystals,” Appl. Phys. Lett. 105, 092903.CrossRefGoogle Scholar
Song, B., Bao, H., Li, H., Lei, M., Peng, T., Jian, J., Liu, J., Wang, W., Wang, W., and Chen, X. (2009). “Observation of glassy ferromagnetism in Al-doped 4H-SiC,” J. Am. Chem. Soc. 131, 13761377.CrossRefGoogle ScholarPubMed
Thomasson, A., Ibrahim, F., Lefevre, C., Autissie, E., Roullan, F., and Mény, C. (2013). “Effects of iron concentration and cationic site disorder on the optical properties of magnetoelectric gallium ferrite thin films,” RSC Adv. 3, 31243130.CrossRefGoogle Scholar
Trassin, M., Viart, N., Versini, G., Loison, J. L., Vola, J. P., and Schmerber, G. (2007). “Epitaxial thin films of multiferroic GaFeO3 on conducting indium TiN oxide (001) buffered yttrium-stabilized zirconia (001) by pulsed laser deposition,” Appl. Phys. Lett. 91, 202504.CrossRefGoogle Scholar
Wu, Z. P., Bai, G. X., Hu, Q. R., Guo, D. Y., Sun, C. L.; Ji, L. Y., Lei, M., Li, L. H., Li, P. G., Hao, J. H., and Tang, W. H. (2015). “Effects of dopant concentration on structural and near-infrared luminescence of Nd3+-doped beta-Ga2O3 thin films,” Appl. Phys. Lett. 106, 171910.CrossRefGoogle Scholar
Xiao, H. D., Ma, H. L., Xue, C. S., Zhuang, H. Z., Ma, J., and Zong, F. J. (2007). “Synthesis and structural properties of beta-gallium oxide particles from gallium nitride powder,” Mater. Chem. Phys. 101, 99102.CrossRefGoogle Scholar
Xu, N., Liu, L., Sun, X., Liu, X., Han, D., and Wang, Y. (2008). “Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories,” Appl. Phys. Lett. 92, 232112.CrossRefGoogle Scholar
Yamashita, T. and Hayes, P. (2008). “Analysis of XPS spectra of Fe2+, and Fe3+, ions in oxide materials,” Appl. Surf. Sci. 254, 24412449.CrossRefGoogle Scholar

Yan et al. supplementary material 1

Yan et al. supplementary material

File 708 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 26
Total number of PDF views: 106 *
View data table for this chart

* Views captured on Cambridge Core between 25th May 2018 - 15th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnetic properties and crystal structure of Ga2−xFexO3
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Magnetic properties and crystal structure of Ga2−xFexO3
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Magnetic properties and crystal structure of Ga2−xFexO3
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *