Skip to main content Accessibility help
×
Home

Profiling Compliers and Noncompliers for Instrumental-Variable Analysis

  • Moritz Marbach (a1) and Dominik Hangartner (a1) (a2)

Abstract

Instrumental-variable (IV) estimation is an essential method for applied researchers across the social and behavioral sciences who analyze randomized control trials marred by noncompliance or leverage partially exogenous treatment variation in observational studies. The potential outcome framework is a popular model to motivate the assumptions underlying the identification of the local average treatment effect (LATE) and to stratify the sample into compliers, always-takers, and never-takers. However, applied research has thus far paid little attention to the characteristics of compliers and noncompliers. Yet, profiling compliers and noncompliers is necessary to understand what subpopulation the researcher is making inferences about and an important first step in evaluating the external validity (or lack thereof) of the LATE estimated for compliers. In this letter, we discuss the assumptions necessary for profiling, which are weaker than the assumptions necessary for identifying the LATE if the instrument is randomly assigned. We introduce a simple and general method to characterize compliers, always-takers, and never-takers in terms of their covariates and provide easy-to-use software in R and STATA that implements our estimator. We hope that our method and software facilitate the profiling of compliers and noncompliers as a standard practice accompanying any IV analysis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Profiling Compliers and Noncompliers for Instrumental-Variable Analysis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Profiling Compliers and Noncompliers for Instrumental-Variable Analysis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Profiling Compliers and Noncompliers for Instrumental-Variable Analysis
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Footnotes

Hide All

Contributing Editor: Sunshine Hillygus

Footnotes

References

Hide All
Abadie, A. 2003. “Semiparametric Instrumental Variable Estimation of Treatment Response Models.” Journal of Econometrics 113(2):231263.
Abdulkadiroğlu, A., Angrist, J., and Pathak, P.. 2014. “The Elite Illusion: Achievement Effects at Boston and New York Exam Schools.” Econometrica 82(1):137196.
Abdulkadiroğlu, A., Angrist, J. D., Hull, P. D., and Pathak, P. A.. 2016. “Charters without Lotteries: Testing Takeovers in New Orleans and Boston.” American Economic Review 106(7):18781920.
Albertson, B., and Lawrence, A.. 2009. “After the Credits Roll: The Long-term Effects of Educational Television on Public Knowledge and Attitudes.” American Politics Research 37(2):275300.
Angrist, J. D., Imbens, G. W., and Rubin, D. B.. 1996. “Identification of Causal Effects Using Instrumental Variables.” Journal of the American Statistical Association 91(434):444455.
Angrist, J. D., and Pischke, J.-S.. 2009. Mostly Harmless Econometrics. An Empiricist’s Companion. Princeton, NJ: Princeton University Press.
Aronow, P. M., and Carnegie, A.. 2013. “Beyond LATE: Estimation of the Average Treatment Effect with an Instrumental Variable.” Political Analysis 21(4):492506.
Baiocchi, M., Cheng, J., and Small, D. S.. 2014. “Instrumental Variable Methods For Causal Inference.” Statistics in Medicine 33(13):22972340.
Campbell, A., Converse, P. E., Miller, W. E., and Stokes, D. E.. 1980. The American Voter. Chicago: University of Chicago Press.
Dahl, G. B., Kostøl, A. R., and Mogstad, M.. 2014. “Family Welfare Cultures.” The Quarterly Journal of Economics 129(4):17111752.
Deaton, A. S.2009. “Instruments of Development: Randomization in the Tropics, and the Search for the Elusive Keys to Economic Development.” Working Paper 14690, National Bureau of Economic Research.
Deshpande, M. 2016. “Does Welfare Inhibit Success? The Long-term Effects of Removing Low-income Youth from the Disability Rolls.” American Economic Review 106(11):33003330.
Dobbie, W., Goldin, J., and Yang, C. S.. 2018. “The Effects of Pretrial Detention on Conviction, Future Crime, and Employment: Evidence from Randomly Assigned Judges.” American Economic Review 108(2):201240.
Dunning, T. 2012. Natural Experiments in the Social Sciences. A Design-based Approach. Cambridge: Cambridge University Press.
Frangakis, C. E., and Rubin, D. B.. 2004. “Principal Stratification in Causal Inference.” Biometrics 58(1):2129.
Gelber, A., Isen, A., and Kessler, J. B.. 2015. “The Effects of Youth Employment: Evidence From New York City Lotteries.” The Quarterly Journal of Economics 131(1):423460.
Gerber, A. S., Karlan, D., and Bergan, D.. 2009. “Does the Media Matter? A Field Experiment Measuring the Effect of Newspapers on Voting Behavior and Political Opinions.” American Economic Journal: Applied Economics 1(2):3552.
Haavelmo, T. 1943. “The Statistical Implications of a System of Simultaneous Equations.” Econometrica 11(1):112.
Heckman, J. J., and Urzua, S.. 2010. “Comparing IV With Structural Models: What Simple IV Can and Cannot Identify.” Journal of Econometrics 156(1):2737.
Huang, Z., Li, L., Ma, G., and Xu, L. C.. 2017. “Hayek, Local Information, And Commanding Heights: Decentralizing State-owned Enterprises in China.” American Economic Review 107(8):24552478.
Imbens, G. 2010. “Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2010).” Journal of Economic Literature 48(2):399423.
Jacob, B. A., Kapustin, M., and Ludwig, J.. 2014. “The Impact of Housing Assistance on Child Outcomes: Evidence From a Randomized Housing Lottery.” The Quarterly Journal of Economics 130(1):465506.
Manski, C. F. 1988. Analog Estimation Methods in Econometrics. New York: Chapman and Hall.
Marbach, M., and Hangartner, D.. 2019. “Replication Data For: Profiling Compliers and Non-compliers For Instrumental-Variable Analysis.” https://doi.org/10.7910/DVN/TRLTPY, Harvard Dataverse, V1.
Pianzola, J., Trechsel, A. H., Vassil, K., Schwerdt R., G., and Alvarez, M.. 2019. “The Impact of Personalized Information on Vote Intention: Evidence From a Randomized Field Experiment.” The Journal of Politics (forthcoming).
Pinotti, P. 2017. “Clicking on Heaven’s Door: The Effect of Immigrant Legalization on Crime.” American Economic Review 107(1):138168.
Solis, A. 2017. “Credit Access and College Enrollment.” Journal of Political Economy 125(2):562622.
Sovey, A. J., and Green, D. P.. 2011. “Instrumental Variables Estimation in Political Science: A Readers’ Guide.” American Journal of Political Science 55(1):188200.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Marbach and Hangartner supplementary material
Marbach and Hangartner supplementary material

 Unknown (151 KB)
151 KB

Profiling Compliers and Noncompliers for Instrumental-Variable Analysis

  • Moritz Marbach (a1) and Dominik Hangartner (a1) (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.