Skip to main content Accessibility help
×
Home

Properties and mineralogy of topsoil in the town of Longyearbyen (Spitsbergen, Norway)

  • Wojciech Szymański (a1), Janusz Siwek (a2), Michał Skiba (a3), Bronisław Wojtuń (a4), Aleksandra Samecka-Cymerman (a4), Paweł Pech (a4), Ludmiła Polechońska (a4) and Aleksandra Smyrak-Sikora (a5)...

Abstract

Soil is one of the most important constituents of an ecosystem, playing a crucial role in many environmental reactions and processes. Despite the fact that many environmental studies were conducted in the vicinity of Longyearbyen, very little is known about the physical and chemical properties as well as mineralogy of soils occurring in this town. Thus, the main aims of this study were: (1) to determine the texture, chemical properties and mineralogy of the topsoil horizons of urban soils occurring in the Longyearbyen area (Spitsbergen, Norway); and (2) to determine and explain their spatial distribution within the area of Longyearbyen. In general, the topsoils are characterised by loamy texture; acidic reaction; quite high content of total organic carbon (TOC); high content of Si, Al and Fe; and low content of K, Na, Ca, Mg and P. Quartz, K-feldspar, plagioclase, mica and chlorite are the prevailing minerals. Differences in the concentration of TOC, total nitrogen and elements in the topsoils are mainly related to the diversity of texture and mineralogy of the local parent material and the development of vegetation cover. The results indicate that topsoils in Longyearbyen are characterised by the natural properties and are not strongly transformed by human activity. However, pollution of soil with trace elements related to coal mining should be checked.

Copyright

Corresponding author

Author for correspondence: Wojciech Szymański, Email: w.szymanski@uj.edu.pl

References

Hide All
Acosta, A. J., Faz, A., & Martinez-Martinez, S. (2010). Identification of heavy metal sources by multivariable analysis in a typical Mediterranean city (SE Spain). Environmental Monitoring and Assessment, 169, 519530.
Andersson, M., Ottesen, R. T., & Langedal, M. (2010). Geochemistry of urban surface soils—Monitoring in Trondheim, Norway. Geoderma, 156, 112118.
Askaer, L., Schmidt, L. B., Elberling, B., Asmund, G., & Jónsdóttir, I. S. (2008). Environmental impact on an Arctic soil-plant system resulting from metals released from coal mine waste in Svalbard (78° N). Water Air & Soil Pollution, 195, 99114.
Bardgett, R. D., Van der Wal, R., Jónsdóttir, I. S., Quirk, H., & Dutton, S. (2007). Temporal variability in plant and soil nitrogen pools in a high-Arctic ecosystem. Soil Biology and Biochemistry, 39, 21292137.
Beumer, L. T., Varpe, Ø., & Hansen, B. B. (2017). Cratering behaviour and faecal C:N ratio in relation to seasonal snowpack characteristics in a High-Arctic ungulate. Polar Research, 36, 1286121.
Biasioli, M., Grčman, H., Krajl, T., Madrid, F., Diaz-Barrientos, E., & Ajmone-Marsan, F. (2007). Potentially toxic elements contamination in urban soils: A comparison of three European cities. Journal of Environmental Quality, 36, 7079.
Birke, M., & Rauch, U. (2000). Urban geochemistry: Investigations in the Berlin metropolitan area. Environmental Geochemistry and Health, 22, 233248.
Borden, P. W., Ping, C. L., McCarthy, P. J., & Naidu, S. (2010). Clay mineralogy in Arctic tundra Gelisols, Northern Alaska. Soil Science Society of America Journal, 74, 580592.
Brady, N. C., & Weil, R. R. (2004). The nature and properties of soils. Delhi, India: Pearson Education, Inc.
Bryant, I. D. (1982). Loess deposits in lower Adventdalen, Spitsbergen. Polar Research, 2, 93103.
Charlesworth, S., Everett, M., McCarthy, R., Ordonez, A., & De Miguell, E. (2003). A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environment International, 29, 563573.
Chen, X., Xia, X. H., Zhao, Y., & Zhang, P. (2010). Heavy metals concentrations in roadside soils and correlation with urban traffic in Beijing, China. Journal of Hazardous Materials, 181, 640646.
Christiansen, H. H. (2005). Thermal regime of ice-wedge cracking in Adventdalen, Svalbard. Permafrost and Periglacial Processes, 16, 8798.
Ćmiel, S. R., & Fabiańska, M. J. (2004). Geochemical and petrographic properties of some Spitsbergen coals and dispersed organic matter. International Journal of Coal Geology, 57, 7797.
Dai, X. Y., Ping, C.-L., & Michaelson, G. J., (2002). Characterizing soil organic matter in Arctic tundra soils by different analytical approaches. Organic Geochemistry, 33, 407419.
Dallman, W. K., Kjærnet, T., & Nøttvedt, A. (2001). Geological map of Svalbard 1:100 000. Sheet C9Q Adventdalen. Temakart No. 31/32. Tromsø: Norwegian Polar Institute.
Dziadowiec, H., Gonet, S., & Plichta, W. (1994). Properties of humic acids of Arctic tundra soils in Spitsbergen. Polish Polar Research, 15(1--2), 7181.
Eckerstorfer, M., & Christiansen, H. H. (2011). Topographical and meteorological control on snow avalanching in the Longyearbyen area, central Svalbard 2006-2009. Geomorphology, 134, 186196.
Etzelmüller, B., & Sollid, J. L. (1991). The role of weathering and pedological processes for the development of sorted circles on Kvadehuksletta, Svalbard; A short report. Polar Research, 9(2), 181191.
Flem, B., Eggen, O. A., Torgersen, E., Kongsvik, M. K., & Ottesen, R. T. (2018). Urban geochemistry in Kristiansand, Norway. Journal of Geochemical Exploration, 187, 2133.
Førland, E. J., Benestad, R. E., Flatøy, F., Hanssen-Bauer, I., Haugen, J. E., Isaksen, K., Sorteberg, A., & Ådlandsvik, B. (2009). Climate development in North Norway and the Svalbard region during 1900–2100. Tromsø: Norwegian Polar Institute.
Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (Vol. 9, 2nd ed., pp. 427445) [Agronomy monograph]. Madison, Wisconsin: ASA-SSSA.
Gentsch, N., Mikutta, R., Shibistova, O., Wild, B., Schnecker, J., Richter, A., … Guggenberger, G. (2015). Properties and bioavailability of particulate and mineral associated organic matter in Arctic permafrost soils, Lower Kolyma region, Russia. European Journal of Soil Science, 66, 722734.
Gong, M., Wu, L., Bi, X. Y., Ren, L. M., Wang, L., Ma, Z. D., …, Li, Z. G. (2010). Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban-rural topsoils in Wuhan, central China. Environmental Geochemistry and Health, 32(1), 5972.
Gulińska, J., Rachlewicz, G., Szczuciński, W., Barałkiewicz, D., Kózka, M., Bulska, E., & Burzyk, M. (2003). Soil contamination in high Arctic areas of human impact, central Spitsbergen, Svalbard. Polish Journal of Environmental Studies, 12(6), 701707.
Guney, M., Onay, T. T., & Copty, N. K. (2010). Impact of overland traffic on heavy metal levels in highway dust and soils of Istanbul, Turkey. Environmental Monitoring and Assessment, 164, 101110.
Haldar, S. K., & Tišljar, J. (2014). Introduction to mineralogy and petrology. The Netherlands: Elsevier.
Hanssen-Bauer, I., Kristensen, M., & Steffensen, E. L. (1990). The climate of Spitsbergen. Klima: Norwegian Meteorological Institute Report 39/40. Oslo: Norwegian Meteorological Institute.
Imperato, M., Adamo, P., Naimoa, D., Arienzo, M., Stanzione, D., & Violante, P. (2003). Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 124, 247256.
Johansen, B., & Tømmervik, H. (2014). The relationship between phytomass, NDVI and vegetation communities on Svalbard. International Journal of Applied Earth Observation and Geoinformation, 27, 2030.
Johansen, B. E., Tømmervik, H., & Karlsen, S. R. (2012). Vegetation mapping of Svalbard utilizing Landsat TM/ETM+ data. Polar Record, 48, 4763.
Kabała, C., & Zapart, J. (2009). Recent, relic and buried soils in the forefield of Werenskiold Glacier, SW Spitsbergen. Polish Polar Research, 30(2), 161178.
Kabala, C., & Zapart, J. (2012). Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago. Geoderma, 175-176, 920.
Klimowicz, Z., Melke, J., & Uziak, S. (1997). Peat soils in the Bellsund region, Spitsbergen. Polish Polar Research, 18(1), 2539.
Klimowicz, Z., & Uziak, S. (1996a). Soil and vegetation conditions in small valleys at southern coast of Bellsund, Spitsbergen. Polish Polar Research, 17, 93106.
Klimowicz, Z., & Uziak, S. (1996b). Arctic soil properties associated with micro-relief forms in the Bellsund region (Spitsbergen). Catena, 28, 135149.
Lee, C. S., Li, X., Shi, W., Cheung, S. C., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356, 4561.
Lewińska-Preis, L., Fabiańska, M. J., Ćmiel, S., & Kita, A. (2009). Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway. International Journal of Coal Geology, 80, 211223.
Lorenz, K., & Lal, R. (2009). Biogeochemical C and N cycles in urban soils. Environment International, 35, 18.
Lu, G., & Wong, D. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers and Geosciences, 34(9), 10441056.
Luo, X. S., Yu, S., Zhu, Y. G., & Li, H. D. (2012). Trace metal contamination in urban soils of China. Science of the Total Environment, 421–422, 1730.
Madan, N. J., Deacon, L. J., & Robinson, C. H. (2007). Greater nitrogen and/or phosphorus availability increase plant species’ cover and diversity at a High Arctic polar semidesert. Polar Biology, 30, 559570.
Mann, D. H., Sletten, R. S., & Ugolini, F. C. (1986). Soil development at Kongsfjord, Spitsbergen. Polar Research, 4, 116.
Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229243.
Mao, Y., Sang, S., Liu, S., & Jia, J. (2014). Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China. Comptes Rendus Biologies, 337, 332337.
Massas, I., Ehaliotis, C., Kalivas, D., & Panagopoulou, G. (2010). Concentrations and availability indicators of soil heavy metals: The case of children’s playgrounds in the city of Athens (Greece). Water Air & Soil Pollution, 212, 5163.
Melke, J., & Chodorowski, J. (2006). Formation of arctic soils in Chamberlindalen, Bellsund, Spitsbergen. Polish Polar Research, 27(2), 119132.
Melke, J., & Uziak, S. (1989). Dynamics of moisture, redox potential and oxygen diffusion rate of some soils from Calypsostranda, Spitsbergen. Polish Polar Research, 10(1), 91104.
Migała, K., Wojtuń, B., Szymański, W., & Muskała, P. (2014). Soil moisture and temperature variation under different types of tundra vegetation during the growing season: A case study from the Fuglebekken catchment, SW Spitsbergen. Catena, 116, 1018.
Mihailović, A., Budinski-Petković, L. J., Popov, S., Ninkov, J., Vasin, J., Ralević, N. M., & Vučinić Vasić, M. (2015). Spatial distribution of metals in urban soil of Novi Sad, Serbia: GIS based approach. Journal of Geochemical Exploration, 150, 104114.
Morton-Bermea, O., HernandeZ-Alvarez, E., Gonzalez-Hernandez, G., Romero, F., Lozano, R., & Beramendi-Orosco, L. E. (2009). Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 101, 218224.
Palmtag, J., Ramage, J., Hugelius, G., Gentsch, N., Lashchinskiy, N., Richter, A., & Kuhry, P. (2016). Controls on the storage of organic carbon in permafrost soil in northern Siberia. European Journal of Soil Science, 67, 478491.
Prestø, T., Lüth, M., & Hassel, K. (2014). Bryophytes of the Longyearbyen area. NTNU Vitenskapsmuseet naturhistorisk notat 2014-10, 1–68.
Rodriguez-Salazar, M. T., Morton-Bermea, O., Hernandez-Alvarez, E., Lozano, R., & Tapia-Cruz, V. (2011). The study of metal contamination in urban topsoils of Mexico City using GIS. Environmental Earth Sciences, 62, 899905.
Sjögersten, S., Van der Wal, R., & Woodin, S. J. (2006). Small-scale hydrological variation determines landscape CO2 fluxes in the high Arctic. Biogeochemistry, 80, 205216.
Skiba, S., Drewnik, M., & Kacprzak, A. (2002). Soils of the western coast of Sørkappland. In Ziaja, W., and Skiba, S. (Eds.) Sørkappland landscape structure and functioning (Spitsbergen, Svalbard) (pp. 5186). Kraków: Jagiellonian University Press.
Sollito, D., Romic, M., Castrignano, S., Romic, D., & Bakic, H. (2010). Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. Catena, 80, 182194.
Środoń, J. (2006). Identification and quantitative analysis of clay minerals. In Bergaya, F., Theng, B.K.G., and Lagaly, G. (Eds.), Handbook of clay science (pp. 765787). Amsterdam, The Netherlands: Elsevier.
Szymański, W., Siwek, J., Waścińska, J., & Wojtuń, B. (2016a). Texture and geochemistry of surface horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen. Polish Polar Research, 37(3), 361377.
Szymański, W., Skiba, S., & Wojtuń, B. (2013). Distribution, genesis, and properties of Arctic soils: A case study from the Fuglebekken catchment, Spitsbergen. Polish Polar Research, 34(3), 289304.
Szymański, W., Skiba, M., Wojtuń, B., & Drewnik, M. (2015). Soil properties, micromorphology, and mineralogy of cryosols from sorted and unsorted patterned grounds in the Hornsund area, SW Spitsbergen. Geoderma, 253-254, 111.
Szymański, W., Wojtuń, B., Stolarczyk, M., Siwek, J., & Waścińska, J. (2016b). Organic carbon and nutrients (N, P) in surface soil horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen. Polish Polar Research, 37(1), 4966.
Thomas, G. W. (1996). Soil pH and soil acidity. In Sparks, D. L., et al. (Eds.), Methods of soil analysis. Part 3. Chemical methods, SSSA Book Series (Vol. 5, pp. 475490). Madison, Wisconsin: SSSA and ASA.
Watanabe, T., Matsuoka, N., Christiansen, H. H., & Cable, S. (2016). Soil physical and environmental conditions controlling patterned-ground variability at a continuous permafrost site, Svalbard. Permafrost and Periglacial Processes, 28(2), 433445.
White, D. M., Garland, D. S., Dai, X., & Ping, C. L. (2002). Fingerprinting soil organic matter in the Arctic to help predict CO2 flux. Cold Regions Science and Technology, 35, 185194.
Wilson, M. J. (2004). Weathering of the primary rock-forming minerals: Processes, products and rates. Clay Minerals, 39, 233266.
Ziółek, M., & Melke, J. (2014). The impact of seabirds on the content of various forms of phosphorus in organic soils of the Bellsund coast, western Spitsbergen. Polar Research, 33, 19986.
Zwolicki, A., Zmudczyńska-Skarbek, K. M., Iliszko, L., & Stempniewicz, L. (2013). Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biology, 36, 363372.
Zwolicki, A., Zmudczyńska-Skarbek, K., Matuła, J., Wojtuń, B., & Stempniewicz, L. (2016). Differential responses of Arctic vegetation to nutrient enrichment by plankton and fish-eating colonial seabirds in Spitsbergen. Frontiers in Plant Science, 7, 1959.

Keywords

Properties and mineralogy of topsoil in the town of Longyearbyen (Spitsbergen, Norway)

  • Wojciech Szymański (a1), Janusz Siwek (a2), Michał Skiba (a3), Bronisław Wojtuń (a4), Aleksandra Samecka-Cymerman (a4), Paweł Pech (a4), Ludmiła Polechońska (a4) and Aleksandra Smyrak-Sikora (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed