Skip to main content Accessibility help
×
Home

Genetic polymorphisms among and between blast disease resistant and susceptible finger millet, Eleusine coracana (L.) Gaertn.

  • Dipnarayan Saha (a1), Rajeev Singh Rana (a1), Lalit Arya (a1), Manjusha Verma (a1), M. V. Channabyre Gowda (a2) and Hari D. Upadhyaya (a3)...

Abstract

Fungal blast disease is one of the major constraints in finger millet production. Breeding for disease resistance in finger millet, needs characterization of genetic polymorphism among and between the resistant and susceptible genotypes. In total, 67 finger millet genotypes, which are resistant or susceptible to fungal blast disease, were analysed using sequence-related amplified polymorphism (SRAP) and simple sequence repeat (SSR) markers to assess genetic variations and select diverse parents. Twelve each of SRAP and SSR primers produced 95.1 and 93.1% polymorphic bands and grouped them into unweighted pair-group method with arithmetic average clusters. Two of the finger millet genotypes, IE 4709 (blast resistant) and INDAF 7 (susceptible) were distinguished as most diverse genotypes as parents. Several genotype-specific bands observed with SSR primers are potential in developing genotype-specific markers. A high genetic diversity within the resistant and susceptible genotypes, rather than between them, was revealed through Nei's gene diversity (h) index and analysis of molecular variance. The finding helps us to understand the extent of genetic polymorphism between blast disease resistant and susceptible finger millet genotypes to exploit in resistance breeding programs.

Copyright

Corresponding author

*Corresponding author. E-mail: dipsaha72@yahoo.com

Footnotes

Hide All

Present address: Division of Crop Improvement, ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700120, India.

Footnotes

References

Hide All
Arya, L, Verma, M, Gupta, VK and Seetharam, A (2013) Use of genomic and genic SSR markers for assessing genetic diversity and population structure in Indian and African finger millet (Eleusine coracana (L.) Gaertn.) germplasm. Plant Systematics and Evolution 299: 13951401.
Babu, BK, Senthil, N, Gomez, SM, Biji, KR, Rajendraprasad, NS, Satheesh Kumar, S and Babu, RC (2007) Assessment of genetic diversity among finger millet (Eleusine coracana (L.) Gaertn.) accessions using molecular markers. Genetic Resources and Crop Evolution 54: 399404.
Babu, TK, Thakur, RP, Reddy, PN, Upadhyaya, HD, Girish, AG and Sarma, NDRK (2012) Development of a field screening technique and identification of blast resistance in finger millet core collection. Indian Journal of Plant Protection 40: 4551.
Babu, TK, Thakur, RP, Upadhyaya, HD, Reddy, PN, Sharma, R, Girish, AG and Sarma, NDRK (2013) Resistance to blast (Magnaporthe grisea) in a mini-core collection of finger millet germplasm. European Journal of Plant Pathology 135: 299311.
Babu, BK, Dinesh, P, Agrawal, PK, Sood, S, Chandrashekara, C, Bhatt, JC and Kumar, A (2014) Comparative genomics and association mapping approaches for blast resistant genes in finger millet using SSRs. PLoS ONE 9: e99182. doi: 10.1371/journal.pone.0099182
Chethan, S and Malleshi, NG (2007) Finger millet polyphenols: characterization and their nutraceutical potential. American Journal of Food Technology 2: 618629.
Dida, MM and Devos, KM (2006) Finger millet. In: Kole, C (ed.) Cereals and Millets. NY, New York: Springer, pp. 333343.
Dida, MM, Srinivasachary Ramakrishnan, S, Bennetzen, JL, Gale, MD and Devos, KM (2007) The genetic map of finger millet, Eleusine coracana . Theoretical and Applied Genetics 114: 321332.
Dida, MM, Wanyera, N, Harrison Dunn, ML, Bennetzen, JL and Devos, KM (2008) Population structure and diversity in finger millet (Eleusine coracana) germplasm. Tropical Plant Biology 1: 131141.
Doyle, JJ and Doyle, JL (1990) Isolation of plant DNA from fresh tissue. Focus 12: 1315.
Fakrudin, B, Shashidhar, HE, Kulkarni, RS and Hittalmani, S (2004) Genetic diversity assessment of finger millet, Eleusine coracana (Gaertn.), germplasm through RAPD analysis. PGR Newsletter 138: 5054.
Gowda, J, Suvarna, , Somu, G, Bharathi, S and Mathur, PN (2007) Formation of core set in finger millet (Eleusine coracana (L.) Gaertn.) germplasm using geographical origin and morpho-agronomic characters. Indian Journal of Plant Genetic Resources 20: 3842.
Lenne, JM, Takan, JP, Wanyera, N, Manyasa, EO, Mgonja, MA, Okwadi, J, Brown, AE and Sreenivasaprasad, S (2007) Finger millet blast management: a key entry point for fighting malnutrition and poverty in East Africa. Outlook on Agriculture 36: 101108. http://dx.doi.org/10.5367/000000007781159994
Li, G and Quiros, CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics 103: 455461. doi: 10.1007/s001220100570
Malambane, G, Jaisil, P, Sanitchon, J, Suriharn, B and Jothityangkoon, D (2013) Evaluation of genetic variation among finger millet (Eleusine coracana L. Gaertn) accessions using RAPD markers. SABRAO Journal of Breeding and Genetics 45: 231239.
Mantel, N (1967) The detection of disease clustering and generalized regression approach. Cancer Research 27: 209220.
Mantur, SG, Vishwanath, S and Anilkumar, TB (2001) Evaluation of finger millet genotypes for resistance to blast. Indian Phytopathology 54: 3841.
Mbithi-Mwikya, S, Ooghe, W, Van Camp, J, Nagundi, D and Huyghebaert, A (2000) Amino acid profile after sprouting, autoclaving and lactic acid fermentation of finger millet (Eleusine coracana) and kidney beans (Phaseolus vulgaris L.). Journal of Agricultural Food Chemistry 48: 30813085.
Mohammadi, SA and Prasanna, BM (2003) Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Science 43: 12351248.
Nagaraja, A, Jagadish, PS, Ashok, EG and Krishne Gowda, KT (2007) Avoidance of finger millet blast by ideal sowing time and assessment of varietal performance under rainfed production situations in Karnataka. Journal of Mycopathological Research 46: 109111.
Nagaraja, A, Kumar, B, Raguchander, T, Hota, AK, Patro, TSSK, Gowda, D., Savita, E and Gowda, MVC (2012) Impact of disease management practices on finger millet blast and grain yield. Indian Phytopathology 65: 356359.
Nakayama, H, Nagamine, T and Hayashi, N (2005) Genetic variation of blast resistance in foxtail millet (Setaria italica (L.) P. Beauv.) and its geographic distribution. Genetic Resources and Crop Evolution 52: 863868.
Nei, M (1973) Analysis of gene diversity in subdivided populations. Proceedings of National Academy of Sciences of the United States of America 70: 33213323.
Nirgude, M, Babu, BK, Shambhavi, Y, Singh, UM, Upadhyaya, HD and Kumar, A (2014) Development and molecular characterization of genic molecular markers for grain protein and calcium content in finger millet (Eleusine coracana (L.) Gaertn.). Molecular Biology Reporter 41: 1189–200.
Panwar, P, Nath, M, Yadav, VK and Kumar, A (2010) Comparative evaluation of genetic diversity using RAPD, SSR and cytochrome P450 gene based markers with respect to calcium content in finger millet (Eleusine coracana L. Gaertn.). Journal of Genetics 89: 121133.
Peakall, R and Smouse, PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288295.
Prajapati, VP, Sabalpara, AN and Pawar, DM (2013) Assessment of yield loss due to finger millet blast caused by Pyricularia grisea (Cooke) Sacc. Trends in Biosciences 6: 876878.
Prevost, A and Wilkinson, MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics 98: 107112.
Rajanna, MP, Rangaswamy, BR, Basavaraju, MK, Karegowda, C and Ramaswamy, GR (2000) Evaluation of finger millet genotypes for resistance to blast caused by Pyricularia grisea Sacc. Plant Disease Research 15: 199201.
Rao, ANS (1990) Estimates of losses in finger millet (Eleusine coracana) due to blast disease (Pyricularia grisea). Mysore Journal of Agricultural Sciences 24: 5760.
Roldan-Ruiz, I, Dendauw, J, Van Bockstaele, E, Depicker, A and De Loose, M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding 6: 125134.
Rohlf, FJ (1998) NTSYSpc Numerical Taxonomy and Multivariate Analysis System Version 2.0 User Guide. Applied Biostatistics Inc, Setauket, New York, pp. 37.
Salimath, SS, de Oliveira, AC, Godwin, ID and Bennetzen, JL (1995) Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers. Genome 38: 757763.
Singh, P and Raghuvanshi, RS (2012) Finger millet for food and nutritional security. African Journal of Food Sciences 64: 7784.
Sneath, P and Sokal, R (1973) Numerical Taxonomy. San Francisco: WH Freeman.
Takan, JP, Chipili, J, Muthumeenakshi, S, Talbot, NJ, Manyasa, EO, Bandyopadhyay, R, Sere, Y, Nutsugah, SK, Talhinhas, P, Hossain, M, Brown, AE and Sreenivasaprasad, S (2012) Magnaporthe oryzae populations adapted to finger millet and rice exhibit distinctive patterns of genetic diversity, sexuality and host interaction. Molecular Biotechnology 50: 145158.
Tomar, J, Saini, N, Goyal, BS, Tripathi, N, Shrivastava, AN, Verma, RK and Tiwari, S (2011) Assessment of genetic diversity among rhizoctonia root rot resistant soybean genotypes. Journal of Food Legumes 24: 267272.
Upadhyaya, HD, Sarma, NDRK, Ravishankar, CR, Albrecht, T, Narasimhudu, Y, Singh, SK, Varshney, SK, Reddy, VG, Singh, S, Dwivedi, SL, Wanyera, N, Oduori, COA, Mgonja, MA, Kisandu, DB, Parzies, HK and Gowda, CLL (2010) Developing a mini-core collection in finger millet using multilocation data. Crop Science 50: 19241931.
Upadhyaya, HD, Ramesh, S, Sharma, S, Singh, SK, Varshney, RK, Sarma, NDRK, Ravishankar, CR, Narasimhudu, Y, Reddy, VG, Sahrawat, KL, Dhanalakshmi, TN, Mgonja, MA, Parzies, HK, Gowda, CLL and Singh, S (2011) Genetic diversity for grain nutrients contents in a core collection of finger millet (Eleusine coracana (L.) Gaertn.) germplasm. Field Crops Research 121: 4252.
Yap, IV and Nelson, RJ (1996) Winboot: A Program for Performing Bootstrap Analysis of Binary Data to Determine the Confidence of UPGMA-Based Dendrograms. Manilla, Phillipines: IRRI.
Yeh, FC and Boyle, TJB (1999) POPGENE version 1.3.2: Microsoft window-based freeware for population genetic analysis. http://www.ualberta.ca/~fyeh/index.htm
Zeng, B, Zhang, Y, Huang, L, Jiang, X, Luo, D and Yin, G (2014) Genetic diversity of orchard grass (Dactylis glomerata L.) germplasms with resistance to rust diseases revealed by start codon targeted (SCoT) markers. Biochemical Systematics and Ecology 54: 96102.

Keywords

Type Description Title
WORD
Supplementary materials

Saha supplementary material
Tables S1 and S2

 Word (28 KB)
28 KB

Genetic polymorphisms among and between blast disease resistant and susceptible finger millet, Eleusine coracana (L.) Gaertn.

  • Dipnarayan Saha (a1), Rajeev Singh Rana (a1), Lalit Arya (a1), Manjusha Verma (a1), M. V. Channabyre Gowda (a2) and Hari D. Upadhyaya (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed