Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-26T07:58:48.954Z Has data issue: false hasContentIssue false

Conservation of Billbergia zebrina genetic resources: AFLP polymorphism of in vitro regenerated genotypes

Published online by Cambridge University Press:  12 December 2011

Lirio L. Dal Vesco
Affiliation:
Programa de Pós-graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, 88.034-001Florianópolis, SC, Brazil
Valdir M. Stefenon
Affiliation:
Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa/Campus São Gabriel, 97300-000São Gabriel, RS, Brazil
Leocir J. Welter
Affiliation:
Universidade Federal do Pampa/Campus Itaqui, 97650-000Itaqui, RS, Brazil
Neusa Steiner
Affiliation:
Programa de Pós-graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, 88.034-001Florianópolis, SC, Brazil
Miguel P. Guerra*
Affiliation:
Programa de Pós-graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, 88.034-001Florianópolis, SC, Brazil
*
*Corresponding author. E-mail: mpguerra@cca.ufsc.br

Abstract

Biotechnological techniques comprise useful tools for the conservation of endangered plant genetic resources. In the present work, polymorphism and usefulness of amplified fragment length polymorphism (AFLP) markers in assessing the genetic diversity in populations of Billbergia zebrina were investigated in nodular cultures and adult plants of the species. AFLP markers revealed moderate-to-high genetic diversity based on the estimations of Nei's gene diversity (mean He = 0.28), Shannon index of diversity (mean HS = 0.48) and the number of polymorphic fragments (mean of 56.17 polymorphic fragments over six primer pairs). In comparison to published studies of population genetics performed in other bromeliad species, the present study suggests that natural populations of B. zebrina likely maintain high levels of genetic diversity, an important feature towards conservation of plant genetic resources. The results obtained reveal that AFLP markers comprise a powerful tool in order to assess the levels of genetic diversity in natural populations of this endangered species. Integrating AFLP markers with in vitro propagation techniques is understood as an adequate strategy for conservation programmes of this species.

Type
Short Communication
Copyright
Copyright © NIAB 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, GM, Rech Filho, AR, Puchalski, A, Reis, MS, Nodari, RO and Guerra, MP (2004) Allozymic markers and genetic characterization of a natural population of Vriesea friburgensis var. paludosa, a bromeliad from the Atlantic Forest. Plant Genetics Research 2: 2328.CrossRefGoogle Scholar
Barbará, T, Martinelli, G, Fay, MF, Mayo, SJ and Lexer, C (2007) Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude ‘inselbergs’, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Molecular Ecology 16: 19811992.CrossRefGoogle ScholarPubMed
Barbará, T, Lexer, C, Martinelli, G, Mayo, SJ, Fay, MF and Heuertz, M (2008) Within-population spatial genetic structure in four naturally fragmented species of a neotropical inselberg radiation, Alcantarea imperialis, A. geniculata, A. glaziouana and A. regina (Bromeliaceae). Heredity 101: 285296.Google Scholar
Barbará, T, Martinelli, G, Palma-Silva, C, Fay, MF, Mayo, SJ and Lexer, C (2009) Genetic relationships and variation in reproductive strategies in four closely related bromeliads adapted to neotropical ‘inselbergs’: Alcantarea glaziouana, A. regina, A. geniculata and A. imperialis (Bromeliaceae). Annals of Botany 103: 6577.Google Scholar
Boisselier-Dubayle, M-C, Leblois, R, Samadi, S, Lambourdière, J and Sarthou, C (2010) Genetic structure of the xerophilous bromeliad Pitcairnia geyskesii on inselbergs in French Guiana – a test of the forest refuge hypothesis. Ecography 33: 175184.CrossRefGoogle Scholar
Dal Vesco, LL, Stefenon, VM, Welter, LJ, Scherer, RF and Guerra, MP (2011) Induction and scale-up of Billbergia zebrina nodule cluster cultures: implications for mass propagation, improvement and conservation. Scientia Horticulturae 28: 515522.CrossRefGoogle Scholar
FZB-RS (2003) Lista Final das Espécies da Flora Ameaçada – RS – Decreto Estadual n. 42.099. Available at http://www.fzb.rs.gov.br/downloads/flora_ameacada.pdf (accessed in 1 November 2011).Google Scholar
Lewontin, RC (1972) The apportionment of human diversity. Evolutionary Biology 6: 381390.Google Scholar
Nei, M (1987) Molecular Evolutionary Genetics. New York: Columbia University Press.CrossRefGoogle Scholar
Nei, M and Li, W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Science of the USA 76: 52695273.CrossRefGoogle ScholarPubMed
Nybom, H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13: 11431155.CrossRefGoogle ScholarPubMed
Nybon, H and Bartish, IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics 3: 93114.CrossRefGoogle Scholar
Palma-Silva, C, Lexer, C, Paggi, GM, Barbará, T, Bered, F and Bodanese-Zanettini, MH (2009) Range-wide patterns of nuclear and chloroplast DNA diversity in Vriesea gigantea (Bromeliaceae), a neotropical forest species. Heredity 103: 503512.CrossRefGoogle ScholarPubMed
Palma-Silva, C, Wendt, T, Pinheiro, F, Barbará, T, Fay, MF, Cozzolino, S and Lexer, C (2011) Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Molecular Ecology 20: 31853201.Google Scholar
Rex, M, Patzolt, K, Schulte, K, Zizka, G, Vásquez, R, Ibisch, PL and Weising, K (2007) AFLP analysis of genetic relationships in the genus Fosterella L.B. Smith (Pitcairnioideae, Bromeliaceae). Genome 50: 90105.Google Scholar
Rohlf, FJ (1998) NTSYSpc: Numerical Taxonomy and Multivariate Analysis System (Version 2.0). New York: Exeter Software.Google Scholar
Sgorbati, S, Labra, M, Grugni, E, Barcaccia, G, Galasso, G, Boni, U, Mucciarelli, M, Citterio, S, Iramategui, AB, Gonzales, LV and Scannerini, S (2004) A survey of genetic diversity and reproductive biology of Puya raimondii (Bromeliaceae), the endangered queen of the Andes. Plant Biology 6: 222230.CrossRefGoogle ScholarPubMed
Solorzano, S, Solis, SJ and Davila, P (2010) Low genetic diversity in Tillandsia recurvata (Bromeliaceae), the most ubiquitous epiphyte species of the semiarid and arid zones of North America (Scientific). Journal of the Bromeliad Society 60: 7181.Google Scholar
Soltis, DE, Gilmartin, AJ, Rieseberg, L and Gardner, S (1987) Genetic variation in the epiphytes Tillandsia ionantha and T. recuvarta (Bromeliaceae). American Journal of Botany 74: 531537.Google Scholar
Stefenon, VM, Nodari, RO and Reis, MS (2003) AFLP protocol standardization and its informative capacity to genetic analysis in Araucaria angustifolia. Scientia Forestalis 64: 163171.Google Scholar
Stefenon, VM, Gailing, O and Finkeldey, R (2007) Genetic structure of Araucaria angustifolia (Araucariaceae) populations in Brazil: implications for the in situ conservation of genetic resources. Plant Biology 9: 516525.Google Scholar
Swofford, DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Zanella, CM, Bruxel, M, Paggi, GM, Goetze, M, Buttow, MV, Cidade, FW and Bered, F (2011) Genetic structure and phenotypic variation in wild populations of the medicinal tetraploid species Bromelia antiacantha (Bromeliaceae). American Journal of Botany 98: 15111519.CrossRefGoogle ScholarPubMed
Supplementary material: File

Guerraa Supplementary Material

Guerraa Supplementary Material

Download Guerraa Supplementary Material(File)
File 51.2 KB
Supplementary material: Image

Guerraa Supplementary Image

Guerraa Supplementary Image

Download Guerraa Supplementary Image(Image)
Image 79.8 KB