Skip to main content Accessibility help
×
Home

Conservation of Billbergia zebrina genetic resources: AFLP polymorphism of in vitro regenerated genotypes

  • Lirio L. Dal Vesco (a1), Valdir M. Stefenon (a2), Leocir J. Welter (a3), Neusa Steiner (a1) and Miguel P. Guerra (a1)...

Abstract

Biotechnological techniques comprise useful tools for the conservation of endangered plant genetic resources. In the present work, polymorphism and usefulness of amplified fragment length polymorphism (AFLP) markers in assessing the genetic diversity in populations of Billbergia zebrina were investigated in nodular cultures and adult plants of the species. AFLP markers revealed moderate-to-high genetic diversity based on the estimations of Nei's gene diversity (mean He = 0.28), Shannon index of diversity (mean HS = 0.48) and the number of polymorphic fragments (mean of 56.17 polymorphic fragments over six primer pairs). In comparison to published studies of population genetics performed in other bromeliad species, the present study suggests that natural populations of B. zebrina likely maintain high levels of genetic diversity, an important feature towards conservation of plant genetic resources. The results obtained reveal that AFLP markers comprise a powerful tool in order to assess the levels of genetic diversity in natural populations of this endangered species. Integrating AFLP markers with in vitro propagation techniques is understood as an adequate strategy for conservation programmes of this species.

Copyright

Corresponding author

*Corresponding author. E-mail: mpguerra@cca.ufsc.br

References

Hide All
Alves, GM, Rech Filho, AR, Puchalski, A, Reis, MS, Nodari, RO and Guerra, MP (2004) Allozymic markers and genetic characterization of a natural population of Vriesea friburgensis var. paludosa, a bromeliad from the Atlantic Forest. Plant Genetics Research 2: 2328.
Barbará, T, Martinelli, G, Fay, MF, Mayo, SJ and Lexer, C (2007) Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude ‘inselbergs’, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Molecular Ecology 16: 19811992.
Barbará, T, Lexer, C, Martinelli, G, Mayo, SJ, Fay, MF and Heuertz, M (2008) Within-population spatial genetic structure in four naturally fragmented species of a neotropical inselberg radiation, Alcantarea imperialis, A. geniculata, A. glaziouana and A. regina (Bromeliaceae). Heredity 101: 285296.
Barbará, T, Martinelli, G, Palma-Silva, C, Fay, MF, Mayo, SJ and Lexer, C (2009) Genetic relationships and variation in reproductive strategies in four closely related bromeliads adapted to neotropical ‘inselbergs’: Alcantarea glaziouana, A. regina, A. geniculata and A. imperialis (Bromeliaceae). Annals of Botany 103: 6577.
Boisselier-Dubayle, M-C, Leblois, R, Samadi, S, Lambourdière, J and Sarthou, C (2010) Genetic structure of the xerophilous bromeliad Pitcairnia geyskesii on inselbergs in French Guiana – a test of the forest refuge hypothesis. Ecography 33: 175184.
Dal Vesco, LL, Stefenon, VM, Welter, LJ, Scherer, RF and Guerra, MP (2011) Induction and scale-up of Billbergia zebrina nodule cluster cultures: implications for mass propagation, improvement and conservation. Scientia Horticulturae 28: 515522.
FZB-RS (2003) Lista Final das Espécies da Flora Ameaçada – RS – Decreto Estadual n. 42.099. Available at http://www.fzb.rs.gov.br/downloads/flora_ameacada.pdf (accessed in 1 November 2011).
Lewontin, RC (1972) The apportionment of human diversity. Evolutionary Biology 6: 381390.
Nei, M (1987) Molecular Evolutionary Genetics. New York: Columbia University Press.
Nei, M and Li, W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Science of the USA 76: 52695273.
Nybom, H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13: 11431155.
Nybon, H and Bartish, IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics 3: 93114.
Palma-Silva, C, Lexer, C, Paggi, GM, Barbará, T, Bered, F and Bodanese-Zanettini, MH (2009) Range-wide patterns of nuclear and chloroplast DNA diversity in Vriesea gigantea (Bromeliaceae), a neotropical forest species. Heredity 103: 503512.
Palma-Silva, C, Wendt, T, Pinheiro, F, Barbará, T, Fay, MF, Cozzolino, S and Lexer, C (2011) Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Molecular Ecology 20: 31853201.
Rex, M, Patzolt, K, Schulte, K, Zizka, G, Vásquez, R, Ibisch, PL and Weising, K (2007) AFLP analysis of genetic relationships in the genus Fosterella L.B. Smith (Pitcairnioideae, Bromeliaceae). Genome 50: 90105.
Rohlf, FJ (1998) NTSYSpc: Numerical Taxonomy and Multivariate Analysis System (Version 2.0). New York: Exeter Software.
Sgorbati, S, Labra, M, Grugni, E, Barcaccia, G, Galasso, G, Boni, U, Mucciarelli, M, Citterio, S, Iramategui, AB, Gonzales, LV and Scannerini, S (2004) A survey of genetic diversity and reproductive biology of Puya raimondii (Bromeliaceae), the endangered queen of the Andes. Plant Biology 6: 222230.
Solorzano, S, Solis, SJ and Davila, P (2010) Low genetic diversity in Tillandsia recurvata (Bromeliaceae), the most ubiquitous epiphyte species of the semiarid and arid zones of North America (Scientific). Journal of the Bromeliad Society 60: 7181.
Soltis, DE, Gilmartin, AJ, Rieseberg, L and Gardner, S (1987) Genetic variation in the epiphytes Tillandsia ionantha and T. recuvarta (Bromeliaceae). American Journal of Botany 74: 531537.
Stefenon, VM, Nodari, RO and Reis, MS (2003) AFLP protocol standardization and its informative capacity to genetic analysis in Araucaria angustifolia. Scientia Forestalis 64: 163171.
Stefenon, VM, Gailing, O and Finkeldey, R (2007) Genetic structure of Araucaria angustifolia (Araucariaceae) populations in Brazil: implications for the in situ conservation of genetic resources. Plant Biology 9: 516525.
Swofford, DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
Zanella, CM, Bruxel, M, Paggi, GM, Goetze, M, Buttow, MV, Cidade, FW and Bered, F (2011) Genetic structure and phenotypic variation in wild populations of the medicinal tetraploid species Bromelia antiacantha (Bromeliaceae). American Journal of Botany 98: 15111519.

Keywords

Type Description Title
WORD
Supplementary materials

Guerraa Supplementary Material
Guerraa Supplementary Material

 Word (51 KB)
51 KB
UNKNOWN
Supplementary materials

Guerraa Supplementary Image
Guerraa Supplementary Image

 Unknown (80 KB)
80 KB

Conservation of Billbergia zebrina genetic resources: AFLP polymorphism of in vitro regenerated genotypes

  • Lirio L. Dal Vesco (a1), Valdir M. Stefenon (a2), Leocir J. Welter (a3), Neusa Steiner (a1) and Miguel P. Guerra (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed