Skip to main content Accessibility help
×
Home

Numerical Solution to the Multi-Term Time Fractional Diffusion Equation in a Finite Domain

  • Gongsheng Li (a1), Chunlong Sun (a1), Xianzheng Jia (a1) and Dianhu Du (a1)

Abstract

This paper deals with numerical solution to the multi-term time fractional diffusion equation in a finite domain. An implicit finite difference scheme is established based on Caputo's definition to the fractional derivatives, and the upper and lower bounds to the spectral radius of the coefficient matrix of the difference scheme are estimated, with which the unconditional stability and convergence are proved. The numerical results demonstrate the effectiveness of the theoretical analysis, and the method and technique can also be applied to other kinds of time/space fractional diffusion equations.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Numerical Solution to the Multi-Term Time Fractional Diffusion Equation in a Finite Domain
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Numerical Solution to the Multi-Term Time Fractional Diffusion Equation in a Finite Domain
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Numerical Solution to the Multi-Term Time Fractional Diffusion Equation in a Finite Domain
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. Email addresses:ligs@sdut.edu.cn (Gongsheng Li), sunchunlong527@163.com (Chunlong Sun), kathy1978@126.com (Xianzheng Jia), dudianhu@126.com (Dianhu Du)

References

Hide All
[1]Adams, E. E., Gelhar, L. W., Field study of dispersion in a heterogeneous aquifer 2: Spatial moments analysis, Water Resources Research, 28 (1992), pp. 32933307.
[2]Benson, D. A., The Fractional Advection-Dispersion Equation: Development and Application, Dissertation of Doctorial Degree, University of Nevada, Reno, USA, 1998.
[3]Berkowitz, B., Scher, H., Silliman, S. E., Anomalous transport in laboratory-scale heterogeneous porus media, Water Resources Research, 36 (2000), pp. 149158.
[4]Caponetto, R., Dongola, G., Fortuna, L., Petras, I., Fractional Order Systems: Modeling and Control Applications, World Scientific, Singapore, 2010.
[5]Chen, S., Liu, F., Burrage, K., Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media, Computers and Mathematics with Applications, 67 (2014), pp. 16731681.
[6]Coimbra, C. F. M., Mechanics with variable-order differential operators, Ann. Phys., 12 (2003), pp. 692703.
[7]Daftardar-Gejji, V., Bhalekar, S., Boundary value problems for multi-term fractional differential equationas, J. Math. Anal. Appl., 345 (2008), pp. 754765.
[8]Giona, M., Gerbelli, S., Roman, H. E., Fractional diffusion equation and relaxation in complex viscoelastic materials, Physica A, 191 (1992), pp. 449453.
[9]Hatano, Y., Hatano, N., Dispersive transport of ions in column experiments: an explanation of long-tailed profiles, Water Resources Research, 34 (1998), pp. 10271033.
[10]Jiang, H., Liu, F., Turner, I., Burrage, K., Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain, Computers and Mathematics with Applications, 64 (2012), pp. 33773388.
[11]Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[12]Li, G. S., Gu, W. J., Jia, X. Z., Numerical inversions for space-dependent diffusion coefficient in the time fractional diffusion equation, Journal of Inverse and Ill-Posed Problems, 20 (2012), pp. 339366.
[13]Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K., Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Applied Mathematics and Computation, 191 (2007), pp. 1220.
[14]Liu, F., Zhuang, P., Burrage, K., Numerical methods and analysis for a class of fractional advection-dispersion models, Computers and Mathematics with Applications, 64 (2012), pp. 29903007.
[15]Liu, F., Meerschaert, M. M., McGough, R. J., Zhuang, P., Liu, Q., Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fractional Calculus and Applied Analysis, 16 (2013), pp. 925.
[16]Lorenzo, C. F., Hartley, T. T., Variable order and distributed order fractional operators, Nonlinear Dynam., 29 (2002), pp. 5798.
[17]Luchko, Y., Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351 (2009), pp. 218223.
[18]Luchko, Y., Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation, Computers and Mathematics with Applications, 59 (2010), pp. 17661772.
[19]Luchko, Y., Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), pp. 538548.
[20]Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010.
[21]Meerschaert, M. M., Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, Journal of Computional and Applied Mathematics, 172 (2004), pp. 6577.
[22]Pedro, H. T. C., Kobayashi, M. H., Pereira, J. M. C., Coimbra, C. F. M., Variable order modelling of diffusive-convective effects on the oscillatory flow past a sphere, J. Vib. Control, 14 (2008), pp. 16591672.
[23]Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999.
[24]Sakamoto, K., Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), pp. 426447.
[25]Zhou, L., Selim, H. M., Application of the fractional advection-dispersion equations in porous media, Soil. Sci. Soc. Am. J., 67 (2003), pp. 10791084.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed