[1]
Adams, R. A. and Fournier, J. J. F., Sobolev Space, Academic Press, New York, 2008.

[2]
Arada, N., Casas, E. and Tröltzsch, F., Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), pp. 201–229.

[3]
Becker, R., Estimating the control error in discretization PDE-constrained optimization, J. Numer. Math., 14 (2006), pp. 163–185.

[4]
Bium, H. and Rannacher, R., On mixed finite element methods in plate bending analysis, Comput. Mech., 6 (1990), pp. 221–236.

[5]
Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, Berlin, 1991.

[6]
Casas, E. and Fernández, L. A., Optimal control of semilinear elliptic equations with pointwise constraints on the gradient of the state, Appl. Math. Optim., 27 (1993), pp. 35–56.

[7]
Carstensen, C., Gallistl, D. and Hu, J., A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles, Numer. Math., 124 (2013), pp. 309–335.

[8]
Cao, W. and Yang, D., Ciarlet-Raviart mixed finite element approximation for an optimal control problem governed by the first bi-harmonic equation, J. Comput. Appl. Math., 233 (2009), pp. 372–388.

[9]
Cheng, X. L., Han, W. M. and Huang, H. C., Some mixed finite element methods for biharmonic equation, J. Comput. Appl. Math., 126 (2000), pp. 91–109.

[10]
Chen, Y. and Hou, T., Error estimates and superconvergence of RT0 mixed methods for a class of semilinear elliptic optimal control problems, Numer. Math. Theor. Meth. Appl., 6 (2013), pp. 637–656.

[11]
Chen, Y. and Sun, C., Error estimates and superconvergence of mixed finite element methods for fourth order hyperbolic control problems, Appl. Math. Comput., 244 (2014), pp. 642–653.

[12]
Chen, Y. and Lin, Z., A posteriori error estimates of semidiscrete mixed finite element methods for parabolic optimal control problems, E. Asian J. Appl. Math., 5 (2015), pp. 85–108.

[13]
Chen, Y. and Lu, Z., Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problems, Comput. Methods Appl. Mech. Eng., 199 (2010), pp. 1415–1423.

[14]
Chen, Y. and Lu, Z., High Efficient and Accuracy Numerical Methods for Optimal Control Problems, Beijing, Science Press, 2015.

[15]
Chen, Y., Yi, N. and Liu, W.B., A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), pp. 2254–2275.

[16]
Douglas, J. and Roberts, J.E., Global estimates for mixed finite element methods for second-order elliptic equations, Math. Comp., 44 (1985), pp. 39–52.

[17]
Hinze, M., A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl., 30 (2005), pp. 45–61.

[18]
Frei, S., Rannacher, R. and Wollner, W., A priori error estimates for the finite element discretization of optimal distributed control problems governed by the bi-harmonic operator, Calcolo, 50 (2013), pp. 165–193.

[19]
Johnson, C., On the convergence of a mixed finite-element method for plate bending problems, Numer. Math., 21 (1973), pp. 43–62.

[20]
Li, B. J. and Liu, S. Y., On gradient-type optimization method utilizing mixed finite element approximation for optimal boundary control problem governed by bi-harmonic equation, Appl. Math. Comput., 186 (2007), pp. 1429–1440.

[21]
Li, J., Optimal error estimates of mixed finite element methods for a fourth-order nonlinear elliptic problem, J. Math. Anal. Appl., 334 (2007), pp. 183–195.

[22]
Lions, J.L., Optimal Control of Systems governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.

[23]
Lin, J. and Lin, Q., Supercovergence of a finite element method for the bi-harmonic equation, Numer. Methods Partial Differential Equations., 18 (2002), pp. 420–427.

[24]
Liu, W. and Yan, N., Adaptive Finite Element Methods for Optimal Control Governed by Partial Differential Equations, Science Press, Beijing, 2008.

[25]
Lu, Z. and Chen, Y., L^{∞}-error estimates of triangular mixed finite element methods for optimal control problem governed by semilinear elliptic equation, Numer. Anal. Appl., 12 (2009), pp. 74–86.

[26]
Kong, L., On a fourth order elliptic problem with a p(x) bi-harmonic operator, Appl. Math. Lett., 27 (2014), pp. 21–25.

[27]
Monk, P., A mixed finite element method for the bi-harmonic equation, SIAM J. Numer. Anal., 24 (1987), pp. 737–749.

[28]
Raviart, P.A. and Thomas, J.M., A mixed finite element method for 2^{nd} order elliptic problems, In: Math. Aspects of the Finite Element Method, Lecture Notes in Math, 292-315, Springer-Verlag, Berlin, 1977.

[29]
Scott, R., A Mixed method for 4th order problems using linear finite elements, RARIO Anal. Numer., 33 (1978), pp. 681–697.