Skip to main content Accessibility help
×
×
Home

Latent space models for network perception data

  • Daniel K. Sewell (a1)
Abstract

Social networks, wherein the edges represent nonbehavioral relations such as friendship, power, and influence, can be difficult to measure and model. A powerful tool to address this is cognitive social structures (Krackhardt, D. (1987). Cognitive social structures. Social Networks, 9(2), 109–134.), where the perception of the entire network is elicited from each actor. We provide a formal statistical framework to analyze informants’ perceptions of the network, implementing a latent space network model that can estimate, e.g., homophilic effects while accounting for informant error. Our model allows researchers to better understand why respondents’ perceptions differ. We also describe how to construct a meaningful single aggregated network that ameliorates potential respondent error. The proposed method provides a visualization method, an estimate of the informants’ biases and variances, and we describe a method for sidestepping forced-choice designs.

Copyright
Corresponding author
Corresponding author. Email: daniel-sewell@uiowa.edu
References
Hide All
Aarstad, J., Selart, M., & Troye, S. (2011). Advice seeking network structures and the learning organization. Problems and Perspectives in Management, 9(2), 6370.
Adams, J., & Moody, J. (2007). To tell the truth: Measuring concordance in multiply reported network data. Social Networks, 29(1), 4458.
Almquist, Z. W. (2012). Random errors in egocentric networks. Social Networks, 34(4), 493505.
An, W., & Schramski, S. (2015). Analysis of contested reports in exchange networks based on actors credibility. Social Networks, 40, 2533.
Austin, A., Linkletter, C., & Wu, Z. (2013). Covariate-defined latent space random effects model. Social Networks, 35(3), 338346.
Batchelder, E. (2002). Comparing three simultaneous measurements of a sociocognitive network. Social Networks, 24(3), 261277.
Batchelder, W. H., & Romney, A. K. (1988). Test theory without an answer key. Psychometrika, 53(1), 7192.
Batchelder, W. H., & Romney, A. K. (1989). New results in test theory without an answer key (pp. 229248). Berlin, Heidelberg: Springer.
Batchelder, W. H., Kumbasar, E., & Boyd, J. P. (1997). Consensus analysis of three-way social network data. Journal of Mathematical Sociology, 22(1), 2958.
Bell, D. C., Montoya, L. D., & Atkinson, J. S. (2000). Partner concordance in reports of joint risk behaviors. Journal of Acquired Immune Deficiency Syndromes, 25, 173181.
Bernard, H. R., Killworth, P. D., & Sailer, L. (1979). Informant accuracy in social network data IV: A comparison of clique-level structure in behavioral and cognitive network data. Social Networks, 2(3), 191218.
Bernard, H. R., Killworth, P. D., & Sailer, L. (1982). Informant accuracy in social-network data V: An experimental attempt to predict actual communication from recall data. Social Science Research, 11(1), 3066.
Bond, C. F. Jr., Horn, E. M., & Kenny, D. A. (1997). A model for triadic relations. Psychological Methods, 2(1), 7994.
Bondonio, D. (1998). Predictors of accuracy in perceiving informal social networks. Social Networks, 20(4), 301330.
Brands, R. A. (2013). Cognitive social structures in social network research: A review. Journal of Organizational Behavior, 34, S82S103.
Brewer, D. D. (2000). Forgetting in the recall-based elicitation of personal and social networks. Social Networks, 22(1), 2943.
Brewer, D. D., & Webster, C. M. (2000). Forgetting of friends and its effects on measuring friendship networks. Social Networks, 21(4), 361373.
Butts, C. T. (2003). Network inference, error, and informant (in)accuracy: A Bayesian approach. Social Networks, 25(2), 103140.
Butts, C. T. (2008). A relational event framework for social action. Sociological Methodology, 38, 155200.
Butts, C. T. (2011). Bayesian meta-analysis of social network data via conditional uniform graph quantiles. Sociological Methodology, 41, 257298.
Casciaro, T. (1998). Seeing things clearly: Social structure, personality, and accuracy in social network perception. Social Networks, 20(4), 331351.
Casciaro, T., Carley, K. M., & Krackhardt, D. (1999). Positive affectivity and accuracy in social network perception. Motivation and Emotion, 23(4), 285306.
Davis, J. A., & Leinhardt, S. (1972). Sociological theories in progress. In The structure of positive interpersonal relations in small groups (vol. 2). Boston: Houghton Mifflin.
Durante, D., & Dunson, D. B. (2014). Nonparametric Bayes dynamic modelling of relational data. Biometrika, 101(4), 883898.
Durante, D., Dunson, D. B, & Vogelstein, J. T. (2017). Nonparametric Bayes modeling of populations of networks. Journal of the American Statistical Association, 112(520), 15161530.
Freeman, L., & Romney, A. K. (1987). Words, deeds and social structure: A preliminary study of the reliability of informants. Human Organization, 46(4), 330334.
Freeman, L. C., Romney, A. K., & Freeman, S. C. (1987). Cognitive structure and informant accuracy. American Anthropologist, 89(2), 310325.
Geweke, J. (1992). Bayesian statistics 4. In Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Oxford: Clarendon Press.
Grippa, F., & Gloor, P. A. (2009). You are who remembers you. detecting leadership through accuracy of recall. Social Networks, 31(4), 255261.
Hammer, M. (1985). Implications of behavioral and cognitive reciprocity in social network data. Social Networks, 7(2), 189201.
Handcock, M. S, Raftery, A. E, & Tantrum, J. M. (2007). Model-based clustering for social networks. Journal of the Royal Statistical Society, Series A, 170(2), 301354.
Hildum, D. C. (1986). ‘Competence’ and ‘performance’ in network structure. Social Networks, 8(1), 7995.
Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the American Statistical Association, 100(469), 286295.
Hoff, P. D. (2009). Multiplicative latent factor models for description and prediction of social networks. Computational and Mathematical Organization Theory, 15(4), 261272.
Hoff, P. D, Raftery, A. E, & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97(460), 10901098.
Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2008). Goodness of fit of social network models. Journal of the American Statistical Association, 103(481), 248258.
Johnson, J. C., & Orbach, M. K. (2002). Perceiving the political landscape: Ego biases in cognitive political networks. Social Networks, 24(3), 291310.
Kenny, D. A. (1994). Interpersonal perception: A social relations analysis. New York: Guilford Press.
Kilduff, M., Crossland, C., Tsai, W., & Krackhardt, D. (2008). Organizational network perceptions versus reality: A small world after all? Organizational Behavior and Human Decision Processes, 107(1), 1528.
Killworth, P. D., & Bernard, H. R. (1976). Informant accuracy in social network data. Human Organization, 35(3), 269286.
Killworth, P. D., & Bernard, H. R. (1977). Informant accuracy in social network data II. Human Communication Research, 4(1), 318.
Killworth, P. D., & Bernard, H. R. (1979). Informant accuracy in social network data III: A comparison of triadic structure in behavioral and cognitive data. Social Networks, 2(1), 1946.
Koskinen, J. H. (2002a). Bayesian analysis of cognitive social structures with covariates (Working Paper 2002:3). Department of Statistics.
Koskinen, J. H. (2002b). Bayesian analysis of perceived social networks (Working Paper 2002:3). Department of Statistics.
Koskinen, J. H. (2004). Model selection for cognitive social structures (Working Paper 2004:3). Department of Statistics.
Krackhardt, D. (1987). Cognitive social structures. Social Networks, 9(2), 109134.
Krackhardt, D. (1990). Assessing the political landscape: Structure, cognition, and power in organizations. Administrative Science Quarterly, 35(2), 342369.
Krackhardt, D., & Kilduff, M. (1999). Whether close or far: Social distance effects on perceived balance in friendship networks. Journal of Personality and Social Psychology, 76(5), 770782.
Krivitsky, P. N., Handcock, M. S., Raftery, A. E., & Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Social Networks, 31(3), 204213.
Kumbasar, E., Rommey, A. K., & Batchelder, W. H. (1994). Systematic biases in social perception. American Journal of Sociology, 100(2), 477505.
Lorant, V., Soto, V. E., Alves, J., Federico, B., Kinnunen, J., Kuipers, M., ... Kunst, A. (2015). Smoking in school-aged adolescents: Design of a social network survey in six european countries. BMC Research Notes, 8, 91.
Nakao, K., & Romney, A. K. (1993). Longitudinal approach to subgroup formation: Re-analysis of newcomb’s fraternity data. Social Networks, 15(2), 109131.
Neal, J. W., Neal, Z. P., & Cappella, E. (2014). I know who my friends are, but do you? Predictors of self-reported and peer-inferred relationships. Child Development, 85(4), 13661372.
Neal, J. W., Neal, Z. P., & Cappella, E. (2016). Seeing and being seen: Predictors of accurate perceptions about classmates relationships. Social Networks, 44, 18.
Pattison, P. (1994). Social cognition in context: Some applications of social network analysis. (Chap. 4, pp. 79109). Advances in Social Network Analysis. Thousand Oaks, USA: Sage.
Perry, B. L., & Pescosolido, B. A. (2015). Social network activation: The role of health discussion partners in recovery from mental illness. Social Science & Medicine, 125, 116128.
Romney, A. K., & Faust, K. (1982). Predicting the structure of a communications network from recalled data. Social Networks, 4, 285304.
Romney, A. K., Brewer, D. D., & Batchelder, W. H. (1996). The relation between typicality and semantic similarity structure. Journal of Quantitative Anthropology, 6(1–2), 114.
Sewell, D. K, & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512), 16461657.
Sewell, D. K, & Chen, Y. (2016). Latent space models for dynamic networks with weighted edges. Social Networks, 44, 105116.
Sewell, D. K, & Chen, Y. (2017). Latent space approaches to community detection in dynamic networks. Bayesian Analysis, 12(2), 351377.
Shakya, H. B., Christakis, N. A., & Fowler, J. H. (2015). Social network predictors of latrine ownership. Social Science & Medicine, 125, 129138.
Shoham, D. A., Harris, J. K., Mundt, M., & McGaghie, W. (2016). A network model of communication in an interprofessional team of healthcare professionals: A cross-sectional study of a burn unit. Journal of Interprofessional Care, 30(5), 661667.
Siciliano, M. D, Yenigun, D., & Ertan, G. (2012). Estimating network structure via random sampling: Cognitive social structures and the adaptive threshold method. Social Networks, 34(4), 585600.
Sosa, J., & Rodriguez, A. (2018+). A latent space model for cognitive social structures data. arXiv:1711.03662.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B, 64(4), 583639.
Swartz, T. B, Gill, P. S, & Muthukumarana, S. (2015). A Bayesian approach for the analysis of triadic data in cognitive social structures. Journal of the Royal Statistical Society, Series C, 64(4), 593610.
Warner, R. M, Kenny, D. A, & Stoto, M. (1979). A new round robin analysis of variance for social interaction data. Journal of Personality and Social Psychology, 37(10), 17421757.
Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. New York: Cambridge University Press.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Sewell et al. supplementary material
Sewell et al. supplementary material 1

 PDF (1.7 MB)
1.7 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed