Skip to main content Accessibility help
×
Home

Towards an improved geological interpretation of airborne electromagnetic data: a case study from the Cuxhaven tunnel valley and its Neogene host sediments (northwest Germany)

  • D. Steinmetz (a1), J. Winsemann (a1), C. Brandes (a1), B. Siemon (a2), A. Ullmann (a2) (a3), H. Wiederhold (a3) and U. Meyer (a2)...

Abstract

Airborne electromagnetics (AEM) is an effective technique for geophysical investigations of the shallow subsurface and has successfully been applied in various geological settings to analyse the depositional architecture of sedimentary systems for groundwater and environmental purposes. However, interpretation of AEM data is often restricted to 1D inversion results imaged on resistivity maps and vertical resistivity sections. The integration of geophysical data based on AEM surveys with geological data is often missing and this deficiency can lead to uncertainties in the interpretation process. The aim of this study is to provide an improved methodology for the interpretation of AEM data and the construction of more realistic 3D geological subsurface models. This is achieved by the development of an integrated workflow and 3D modelling approaches based on combining different geophysical and geological data sets (frequency-domain helicopter-borne electromagnetic data (HFEM), time-domain helicopter-borne electromagnetic data (HTEM), three 2D reflection seismic sections and 488 borehole logs). We used 1D inversion results gained from both HFEM and HTEM surveys and applied a 3D resistivity gridding procedure based on geostatistical analyses and interpolation techniques to create continuous 3D resistivity grids. Subsequently, geological interpretations have been performed by combining with, and validation against, borehole and reflection seismic data. To verify the modelling results and to identify uncertainties of AEM inversions and interpretation, we compared the apparent resistivity values of the constructed 3D geological subsurface models with those of AEM field measurements. Our methodology is applied to a test site near Cuxhaven, northwest Germany, where Neogene sediments are incised by a Pleistocene tunnel valley. The Neogene succession is subdivided by four unconformities and consists of fine-grained shelf to marginal marine deposits. At the end of the Miocene an incised valley was formed and filled with Pliocene delta deposits, probably indicating a palaeo-course of the River Weser or Elbe. The Middle Pleistocene (Elsterian) tunnel valley is up to 350 m deep, 0.8–2 km wide, and incised into the Neogene succession. The unconsolidated fill of the Late Miocene to Pliocene incised valley probably formed a preferred pathway for the Pleistocene meltwater flows, favouring the incision. Based on the 3D AEM resistivity model the tunnel-valley fills could be imaged in high detail. They consist of a complex sedimentary succession with alternating fine- and coarse-grained Elsterian meltwater deposits, overlain by glaciolacustrine (Lauenburg Clay Complex) and marine Holsteinian interglacial deposits. The applied approaches and results show a reliable methodology, especially for future investigations of similar geological settings. The 3D resistivity models clearly allow a distinction to be made between different lithologies and enables the detection of major bounding surfaces and architectural elements.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Towards an improved geological interpretation of airborne electromagnetic data: a case study from the Cuxhaven tunnel valley and its Neogene host sediments (northwest Germany)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Towards an improved geological interpretation of airborne electromagnetic data: a case study from the Cuxhaven tunnel valley and its Neogene host sediments (northwest Germany)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Towards an improved geological interpretation of airborne electromagnetic data: a case study from the Cuxhaven tunnel valley and its Neogene host sediments (northwest Germany)
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. Email: winsemann@geowi.uni-hannover.de

References

Hide All
Anell, I., Thybo, H. & Rasmussen, E., 2012. A synthesis of Cenozoic sedimentation in the North Sea. Basin Research 24: 154179.
Archie, G.E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146: 5462.
Auken, E. & Christiansen, A.V., 2004. Layered and laterally constrained 2D inversion of resistivity data. Geophysics 69 (3): 752761.
Auken, E., Christiansen, A.V., Jacobsen, L.H. & Sorensen, K.I., 2008. A resolution study of buried valleys using laterally constrained inversion of TEM data. Journal of Applied Geophysics 65 (1): 1020.
Baldschuhn, R., Frisch, U. & Kockel, F. (eds), 1996. Geotektonischer Atlas von NW-Deutschland 1 : 300000. Bundesanstalt für Geowissenschaften und Rohstoffe (Hannover).
Baldschuhn, R., Binot, F., Fleig, S. & Kockel, F., 2001. Geotektonischer Atlas von Nordwestdeutschland und dem deutschen Nordsee-Sektor. Geologisches Jahrbuch A153: 395.
Bárdossy, G. & Fodor, J., 2001. Traditional and new ways to handle uncertainty in geology. Natural Resources Research 10 (3): 179187.
Besenecker, H., 1976. Bohrdatenbank Niedersachsen, Bohr-ID: 3028HY0304, Landesamt für Bergbau, Energie und Geologie (LBEG) (Hannover).
Betz, D., Führer, F., Greiner, G. & Plein, E., 1987. Evolution of the Lower Saxony Basin. Tectonophysics 137: 127170.
Binot, F. & Wonik, T., 2005. Lithologie und Salz-/Süßwassergrenze in der Forschungsbohrung Cuxhaven Lüdingworth 1/1A. Zeitschrift für Angewandte Geologie 1: 1423.
Blindow, N. & Balke, J., 2005. GPR-Messungen zur Bestimmung der Grundwasseroberfläche im Bereich des Geestrückens südlich von Cuxhaven. Zeitschrift für Angewandte Geologie 1: 3944.
Bosch, J.H.A., Bakker, M.A.J., Gunnink, J.L. & Paap, B.F., 2009. Airborne electromagnetic measurements as basis for a 3D geological model of an Elsterian incision. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 160 (3): 249258.
Brandes, C., Pollok, L., Schmidt, C., Riegel, W., Wilde, V. & Winsemann, J., 2012. Basin modelling of a lignite-bearing salt rim syncline: insights into rim syncline evolution and salt diapirism in NW Germany. Basin Research 24: 699716.
Burschil, T., Wiederhold, H. & Auken, E., 2012a. Seismic results as a-priori knowledge for airborne TEM data inversion – A case study. Journal of Applied Geophysics 80: 121128.
Burschil, T., Scheer, W., Kirsch, R. & Wiederhold, H., 2012b. Compiling geophysical and geological information into a 3-D model of the glacially-affected island of Föhr. Hydrology and Earth System Sciences 16: 34853498.
BurVal Working Group, 2009. Buried Quaternary valleys - a geophysical approach. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 160 (3): 237247.
Cameron, T.D.J., Buat, J. & Mesdag, C.S., 1993. High resolution seismic profile through a Late Cenozoic delta complex in the southern North Sea. Marine and Petroleum Geology 10: 591599.
Caspers, G., Jordan, H., Merkt, J., Meyer, K.-D., Müller, H. & Streif, H., 1995. III. Niedersachsen. In: Benda, L. (ed.): Das Quartär Deutschlands. Gebrüder Bornträger (Berlin): 2358.
Catuneanu, O., 2002. Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. Journal of African Earth Sciences 35: 143.
Catuneanu, O., Galloway, W.E., Kendall, C.G.St.C., Miall, A.D., Posamentier, H.W., Strasser, A. & Tucker, M.E., 2011. Sequence Stratigraphy: Methodology and Nomenclature. Newsletters on Stratigraphy 44 (3): 173245.
Christensen, N.B., Reid, J.E. & Halkjær, M., 2009. Fast, laterally smooth inversion of airborne time-domain electromagnetic data. Near Surface Geophysics 7: 599612.
Dalrymple, R.W., Zaitlin, B.A. & Boyd, R., 1992. Estuarine facies models: conceptual basis and stratigraphic implications. Journal of Sedimentary Petrology 62: 11301146.
Danielsen, J.E., Auken, E., Jørgensen, F., Søndergård, V. & Sørensen, K.I., 2003. The application of the transient electromagnetic method in hydrogeological surveys. Journal of Applied Geophysics 53: 181198.
de Louw, P.G.B., Eeman, S., Siemon, B., Voortman, B.R., Gunnink, J., van Baaren, E.S. & Oude Essink, G.H.P., 2011. Shallow rainwater lenses in deltaic areas with saline seepage. Hydrology Earth System Sciences 15: 36593678.
Ehlers, J., 2011. Geologische Karte von Hamburg 1: 25 000: Erläuterungen zu Blatt Nr. 2326 Fuhlsbüttel. Behörde für Stadtentwicklung und Umwelt, Geologisches Landesamt Hamburg (Hamburg).
Ehlers, J. & Linke, G., 1989. The origin of deep buried channels of Elsterian age in northwest Germany. Journal of Quaternary Science 4: 255265.
Ehlers, J., Meyer, K.-D. & Stephan, H.-J., 1984. Pre-weichselian glaciations of north-west Europe. Quaternary Science Reviews 3: 140.
Ehlers, J., Grube, A., Stephan, H.-J. & Wansa, S., 2011. Pleistocene Glaciations of North Germany – New Results. In: Ehlers, J., Gibbard, P.L. & Hughes, P.D. (eds): Quaternary Glaciations – Extent and Chronology – A Closer Look. Developments in Quaternary Science 15. Elsevier (Amsterdam): 149162.
Eidvin, T. & Rundberg, Y, 2007. Post-Eocene strata of the southern Viking Graben, northern North Sea; integrated biostratigraphic, strontium isotopic and lithostratigraphic study. Norwegian Journal of Geology 87: 391450.
Fraser, D.C., 1978. Resistivity mapping with an airborne multicoil electromagnetic system. Geophysics 43: 144172.
Fugro Consult GmbH, 2012. GeODin 7, http://www.geodin.com. Berlin, Germany.
Gabriel, G., 2006. Gravity investigation of buried Pleistocene subglacial valleys. Near Surface Geophysics 4: 321332.
Gabriel, G., Kirsch, R., Siemon, B. & Wiederhold, H., 2003. Geophysical investigations of buried Pleistocene subglacial valleys in Northern Germany. Journal of Applied Geophysics 53: 159180.
Gast, R. & Gundlach, T., 2006. Permian strike slip and extensional tectonics in Lower Saxony, Germany. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 157 (1): 4155.
Gibbard, P.L., 1988. The history of the great northwest European rivers during the past three million years. Philosophical Transactions of the Royal Society of London B318: 559–602.
Gramann, F., 1988. Major palaeontological events and biostratigraphical correlations. Geologisches Jahrbuch A100: 410423.
Gramann, F., 1989. Forschungsbohrung Wursterheide. Benthonische Foraminiferen und verwandte Mikrofossilien. Biostratigraphie, Faziesanalyse. Geologisches Jahrbuch A111: 287319.
Gramann, F. & Daniels, C.H. von, 1988. Benthic foraminifera: the description of the interregional zonation (B zones). Geologisches Jahrbuch A100: 145151.
Gramann, F. & Kockel, F., 1988. Palaeogeographical, lithological, palaeoecological and palaeoclimatic development of the Northwest European Tertiary Basin. Geologisches Jahrbuch A100: 428441.
Grassmann, S., Cramer, B., Delisle, G., Messner, J. & Winsemann, J., 2005. Geological history and petroleum system of the Mittelplate oil field, Northern Germany. International Journal of Earth Sciences 94: 979989.
Gunnink, J.L. & Siemon, B., 2014. Applying airborne electromagnetics in 3D stochastic geohydrological modelling for determining groundwater protection. Near Surface Geophysics, 12 (early online), doi: 10.3997 /1873-0604.2014044. EAGE Publications (Houten).
Gunnink, J.L., Bosch, J.H.A., Siemon, B., Roth, B. & Auken, E., 2012. Combining ground-based and airborne EM through artificial neural networks for modelling hydrogeological units under saline groundwater conditions. Hydrology and Earth System Sciences 16: 30613074.
Haq, B.U., Hardenbol, J. & Vail, P.R., 1987. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science 235: 11561167.
Hese, F., 2012. 3D Modellierungen und Visualisierung von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein. PhD thesis, Christian-Albrechts-Universität zu Kiel (Kiel).
HGG , 2011. Guide to processing and inversion of SkyTEM data in the Aarhus Workbench. Technical report, Hydro-Geophysical Group, Department of Earth Sciences, University of Aarhus (Aarhus).
Höfle, H.C., Merkt, J. & Müller, H., 1985. Die Ausbreitung des Eem-Meeres in Nordwestdeutschland. Eiszeitalter und Gegenwart 35: 4959.
Høyer, A.-S., Lykke-Andersen, H., Jørgensen, F. & Auken, E., 2011. Combined interpretation of SkyTEM and high-resolution seismic data. Journal of Physics and Chemistry of the Earth 36 (16): 13861397.
Huuse, M., 2002. Late Cenozoic palaeogeography of the eastern North Sea Basin climatic vs. tectonic forcing of basin margin uplift and deltaic progradation. Bullettin of the Geological Society of Denmark 49: 145170.
Huuse, M. & Clausen, O.R., 2001. Morphology and origin of major Cenozoic sequence boundaries in the eastern North Sea Basin: top Eocene, near-top Oligocene and the mid-Miocene unconformity. Basin Research 13: 1741.
Huuse, M. & Lykke-Andersen, H., 2000. Overdeepened Quaternary valleys in the eastern Danish North Sea: morphology and origin. Quaternary Science Reviews 19: 12331253.
Huuse, M., Lykke-Andersen, H. & Michelsen, O., 2001. Cenozoic evolution of the eastern North Sea Basin – new evidence from high-resolution and conventional seismic data. Marine Geology 177: 243269.
Huuse, M., Piotrowski, J.A. & Lykke-Andersen, H., 2003. Geophysical investigations of buried Quaternary valleys in the formerly glaciated NW European lowland: significance for groundwater exploration. Journal of Applied Geophysics 53: 153157.
Janszen, A., 2012. Tunnel valleys: genetic models, sedimentary infill and 3D architecture. PhD thesis, Delft University of Technology (Delft).
Janszen, A., Spaak, M. & Moscariello, A., 2012. Effects of the substratum on the formation of glacial tunnel valleys: an example from the Middle Pleistocene of the southern North Sea Basin. Boreas 41: 629643.
Janszen, A., Moreau, J., Moscariello, A., Ehlers, J. & Kröger, J., 2013. Time-transgressive tunnel-valley infill revealed by a three-dimensional sedimentary model, Hamburg, north-west Germany. Sedimentology 60 (3): 693719.
Jaritz, W., 1987. The origin and development of salt structures in Northwest Germany. In: Lerche, I. & O’Brian, J.J. (eds): Dynamical Geology of Salt and Related Structures. Academic Press (Orlando): 479493.
Jordan, H. & Siemon, B., 2002. Die Tektonik des nordwestlichen Harzrandes – Ergebnisse der Hubschrauber-Elektromagnetik. Zeitschrift der Deutschen Geologischen Gesellschaft 153 (1): 3150.
Jørgensen, F. & Sandersen, P.B.E., 2006. Buried and open tunnel valleys in Denmark – erosion beneath multiple ice sheets. Quaternary Science Reviews 25: 13391363.
Jørgensen, F. & Sandersen, P.B.E., 2009. Buried valley mapping in Denmark: evaluating mapping method constraints and the importance of data density. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 160 (3): 211229.
Jørgensen, F., Lykke-Andersen, H., Sandersen, P.B.E., Auken, E. & Nørmark, E., 2003a. Geophysical investigations of buried Quaternary valleys in Denmark: an integrated application of transient electromagnetic soundings, reflection seismic surveys and exploratory drillings. Journal of Applied Geophysics 53: 215228.
Jørgensen, F., Sandersen, P.B.P. & Auken, E., 2003b. Imaging buried valleys using the transient electromagnetic method. Journal of Applied Geophysics 53: 215228.
Jørgensen, F., Sandersen, P.B.P., Auken, E., Lykke-Andersen, H. & Sørensen, K., 2005. Contributions to the geological mapping of Mors, Denmark – A study based on large-scale TEM survey. Bulletin of the Geological Society of Denmark 52: 5375.
Jørgensen, F., Rønde Møller, R., Nebel, L., Jensen, N.-P., Christiansen, A.V. & Sandersen, P.B.E., 2013. A method for cognitive 3D geological voxel modelling of AEM data. Bulletin of Engineering Geology and the Environment 72 (3–4): 421432.
Jürgens, U., 1996. Mittelmiozäne bis pliozäne Randmeer-Sequenzen aus dem deutschen Sektor der Nordsee. Geologisches Jahrbuch A146: 217232.
Kehew, A.E., Piotrowski, J.A. & Jørgensen, F., 2012. Tunnel valleys: Concepts and controversies – A review. Earth-Science Reviews 113: 3358.
Klimke, J., Wiederhold, H., Winsemann, J., Ertl, G. & Elbracht, J., 2013. Three-dimensional mapping of Quaternary sediments improved by airborne electromagnetics in the case of the Quakenbrück Basin, Northern Germany. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 164 (2): 369384.
Kluiving, S.J., Bosch, J.H.A., Ebbing, J.H.J., Mesdag, C.S. & Westerhoff, R.S., 2003. Onshore and offshore seismic and lithostratigraphic analysis of a deeply incised Quaternary buried valley-system in the Northern Netherlands. Journal of Applied Geophysics 53: 249271.
Knox, R.W.O.B., Bosch, J.H.A., Rasmussen, E.S., Heilmann-Clausen, C., Hiss, M., De Lugt, I.R., Kasińksi, J., King, C., Köthe, A., Słodkowska, B., Standke, G. & Vandenberghe, N., 2010. Cenozoic. In: Doornenbal, J.C. & Stevenson, A.G. (eds): Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten): 211223.
Knudsen, K.L., 1988. Marine Interglacial Deposits in the Cuxhaven Area, NW Germany: A Comparison of Holsteinian, Eemian and Holocene Foraminiferal Faunas. Eiszeitalter und Gegenwart 38: 6977.
Knudsen, K.L., 1993a. Foraminiferal Faunas in Holsteinian Deposits of the Neuwerk Area, Germany. Geologisches Jahrbuch A138: 7795.
Knudsen, K.L., 1993b. Late Elsterian-Holsteinian Foraminiferal Stratigraphy in Boreholes in the Lower Elbe Area, NW Germany. Geologisches Jahrbuch A138: 97119.
Kockel, F., 2002. Rifting processes in NW-Germany and the German North Sea Sector. Netherlands Journal of Geosciences/Geologie en Mijnbouw 81: 149158.
Koltermann, C.E. & Gorelick, S.M., 1996. Heterogeneity in sedimentary deposits: a review of structure-imitating, process-imitating, and descriptive approaches. Water Resources Research 32: 26172658.
Konradi, P., 2005. Cenozoic stratigraphy in the Danish North Sea Basin. Geologie en Mijnbouw 84: 109111.
Köthe, A., 2007. Cenozoic biostratigraphy from the German North Sea sector (G-11-1 borehole, dinoflagellate cysts, calcareous nannoplankton). Zeitschrift der deutschen Gesellschaft für Geowissenschaften 158 (2): 287327.
Köthe, A., Gaedicke, C. & Rüdiger, L., 2008. Erratum: The age of the Mid-Miocene Unconformity (MMU) in the G-11-1 borehole, German North Sea sector. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 159 (4): 687689.
Krige, D.G., 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa 52 (6): 119139.
Kuhlmann, G., de Boer, P., Pedersen, R.B. & Wong, Th.E., 2004. Provenance of Pliocene sediments and paleoenvironmental changes in the southern North Sea region using Samarium-Neodymium (Sm/Nd) provenance ages and clay mineralogy. Sedimentary Geology 171: 205226.
Kuhlmann, G. & Wong, T.E., 2008. Pliocene paleoenvironment evolution as interpreted from 3D-seismic data in the southern North Sea, Dutch offshore sector. Marine and Petroleum Geology 25: 173189.
Kuster, H., 2005. Das jüngere Tertiär in Nord- und Nordostniedersachsen. Geologisches Jahrbuch A158: 0194.
Kuster, H. & Meyer, K.-D., 1979. Glaziäre Rinnen im mittleren und nordöstlichen Niedersachsen. Eiszeitalter und Gegenwart 29: 135156.
Kuster, H. & Meyer, K.-D., 1995. Quartärgeologische Übersichtskarte von Niedersachsen und Bremen, 1 : 500 000. Niedersächsisches Landesamt für Bodenforschung (Hannover).
Lane, R., Green, A., Golding, C., Owers, M., Pik, P., Plunkett, C., Sattel, D. & Thorn, B., 2000. An example of 3D conductivity mapping using the TEMPEST airborne electromagnetic system. Exploration Geophysics 31: 162172.
Lang, J., Winsemann, J., Steinmetz, D., Polom, U., Pollok, L., Böhner, U., Serangeli, J., Brandes, C., Hampel, A. & Winghart, S., 2012. The Pleistocene of Schöningen, Germany: a complex tunnel valley fill revealed from 3D subsurface modelling and shear wave seismics. Quaternary Science Reviews 39: 86105.
Linke, G., 1993. Zur Geologie und Petrographie der Forschungsbohrungen qho 1–5, der Bohrung Hamburg-Billbrook und des Vorkommens von marinem Holstein im Gebiet Neuwerk-Scharhörn. Geologisches Jahrbuch A138: 3576.
Litt, T., Behre, K.-E., Meyer, K.-D., Stephan, H.-J. & Wansa, S., 2007. Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. Eiszeitalter und Gegenwart 56: 765.
Lutz, R., Kalka, S., Gaedicke, C., Reinhardt, L. & Winsemann, J., 2009. Pleistocene tunnel valleys in the German North Sea: spatial distribution and morphology. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 160 (3): 225235.
Mallet, J.-L., 2002. Geomodeling. Oxford University Press (New York): 624 pp.
Mangerud, J., Jansen, E. & Landvik, J.Y., 1996. Late Cenozoic history of the Scandinavian and Barents Sea ice sheets. Global and Planetary Change 12: 1126.
Mann, C.J., 1993. Uncertainty in geology. In: Davis, J.C. & Herzfeld, U.C. (eds): Computers in geology – 25 years of progress. Oxford University Press (Oxford): 241254.
Maystrenko, Y., Bayer, U. & Scheck-Wenderoth, M., 2005a. The Glueckstadt Graben, a sedimentary record between the North- and Baltic Sea in North Central Europe. Tectonophysics 397: 113126.
Maystrenko, Y., Bayer, U. & Scheck-Wenderoth, M., 2005b. Structure and evolution of the Glueckstadt Graben due to salt movements. International Journal of Earth Science 94: 799814.
Michelsen, O., Danielsen, M., Heilmann-Clausen, C., Jordt, H., Laursen, G.V. & Thomsen, E., 1995. Occurrence of major sequence stratigraphic boundaries in relation to basin development in Cenozoic deposits of the southeastern North Sea. In: Steel, R.J., Felt, V.L., Johannesen, E.P. & Mathieu, C. (eds): Sequence Stratigraphy of the Northwest European Margin. Special Publications 5, Norwegian Petroleum Society (Stavanger, Norway): 415427.
Michelsen, O., Thomsen, E., Danielsen, M., Heilmann-Clausen, C., Jordt, H. & Laursen, G.V., 1998. Cenozoic sequence stratigraphy in the eastern North Sea. In: Graciansky, P.-C. de, Hardenbol, J., Jacquin, T. & Vail, P.R. (eds): Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. Special Publication 60, Society for Sedimentary Geology (Oklahoma): 91118.
Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie-Blick, N. & Pekar, S.F., 2005. The Phanerozoic record of global sea-level change. Science 310: 12931298.
Mitchum, R.M., Vail, & Sangree, P.R., , J.B. 1977 Seismic stratigraphy and global changes of sea-level, Part 6: stratigraphic interpretation of seismic reflection patterns in depositional sequences. In: Payton, C.E. (ed.): Seismic Stratigraphy – Applications to Hydrocarbon Exploration. AAPG Memoir 26 (Houston): 117133.
Møller, L.K., Rasmussen, E.S. & Clausen, O. R., 2009. Clinoform migration patterns of a Late Miocene delta complex in the Danish Central Graben; implications for relative sea-level changes. Basin Research 21: 704720.
Moreau, J., Huuse, M., Janszen, A., van der Vegt, P., Gibbard, P.L. & Moscariello, A., 2012. The glaciogenic unconformity of the southern North Sea. In: Huuse, M., Redfern, J., Le Heron, D.P., Dixon, R.J., Moscariello, A. & Craig, J. (eds): Glaciogenic Reservoirs and Hydrocarbon Systems. Special Publications 368, Geological Society (London): 99110.
Müller, H. & Höfle, H.-C., 1994. Die Holstein-Interglazialvorkommen bei Bossel westlich von Stade und Wanhöden nördlich Bremerhaven. Geologisches Jahrbuch A134: 71116.
Newman, G.A., Hohmann, G.W. & Anderson, W.L., 1986. Transient electromagnetic response of a 3-dimensional body in layered earth. Geophysics 51 (8): 16081627.
Odin, G.S. & Kreuzer, H., 1988. Geochronology: some geochronological calibration points for lithostratigraphic units. Geologisches Jahrbuch A100: 403410.
Ortlam, D., 2001. Geowissenschaftliche Erkenntnisse über den Untergrund Bremerhavens. Bremisches Jahrbuch 80: 181197.
Overeem, I., Weltje, G.J., Bishop-Kay, C. & Kroonenberg, S.B., 2001. The late Cenozoic Eridanos delta system in the southern North Sea Basin: a climate signal in sediment supply? Basin Research 13: 293312.
Paine, J.G. & Minty, B.R.S., 2005. Airborne hydrogeophysics. In: Rubin, Y. & Hubbard, S.S. (eds): Hydrogeophysics. Springer (Dordrecht): 333357.
Palamara, D.R., Rodriguez, V.B., Kellett, J. & Macaulay, S., 2010. Salt mapping in the Lower Macquarie area, Australia, using airborne electromagnetic data. Environmental Earth Sciences 61: 613623.
Panteleit, B. & Hammerich, T., 2005. Hydrochemische Charakteristiken und Prozesse im Küstenbereich bei Cuxhaven. Zeitschrift für Angewandte Geologie 1: 6067.
Paradigm®, 2011. GOCAD®. Version 2009.3, Patch 2.
Pharaoh, T.C., Dusar, , Geluk, M., Kockel, M.C., Krawczyk, F., Krzywiec, C.M., Scheck-Wenderoth, P., Thybo, M., Vejbæk, H., & Wees, O.V., van, J.D., 2010. Tectonic evolution. In: Doornenbal, J.C. & Stevenson, A.G., (eds): Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten): 2557.
Plink-Björklund, P., 2008. Wave-to-tide facies change in a Campanian shoreline complex, Chimney Rock Tongue, Wyoming-Utah, U.S.A. In: Hampson, G.J., Steel, R.J., Burgess, P.M. & Dalrymple, R.W. (eds): Recent Advances in Models of Siliciclastic Shallow-Marine Stratigraphy. Special Publications 90, Society for Sedimentary Geology (Oklahoma): 265292.
Praeg, D., 2003. Seismic imaging of mid-Pleistocene tunnel-valleys in the North Sea Basin – high resolution from low frequencies. Journal of Applied Geophysics 53: 273298.
Pryet, A., Ramm, J., Chilès, J.-P., Auken, E., Deffontaines, B. & Violette, S., 2011. 3D resistivity gridding of large AEM datasets: A step toward enhanced geological interpretation. Journal of Applied Geophysics 75: 277283.
Rasmussen, E.S., 2004. The interplay between true eustatic sea-level changes, tectonics, and climatic changes: what is the dominating factor in sequence formation of the Upper Oligocene–Miocene succession in the eastern North Sea Basin, Denmark? Global and Planetary Change 41: 1530.
Rasmussen, E.S. & Dybkjær, K., 2013. Patterns of Cenozoic sediment flux from western Scandinavia: discussion. Basin Research 25: 19.
Rasmussen, E.S., Heilmann-Clausen, C., Waagstein, R. & Eidvin, T., 2008. The Tertiary of Norden. Episodes 31: 6672.
Rasmussen, E.S., Dybkjær, K. & Piasecki, S., 2010. Lithostratigraphy of the Upper Oligocene – Miocene succession of Denmark. Geological Survey of Denmark and Greenland Bulletin 22: 92 pp.
Roskosch, J., Winsemann, J., Polom, U., Brandes, C., Tsukamoto, S., Weitkamp, A., Bartholomäus, W.A., Henningsen, D. & Frechen, M., 2014. Luminescence dating of ice-marginal deposits in northern Germany: evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6). Boreas. DOI 10.1111/bor.12083. Wiley-Blackwell (Hoboken).
Ross, M., Parent, M. & Lefebvre, R., 2005. 3D geologic framework models for regional hydrogeology and land-use management: a case study from a Quaternary basin of southwestern Quebec, Canada. Hydrogeology Journal 13: 690707.
Rumpel, H.-M., Grelle, T., Grüneberg, S., Großmann, E. & Rode, W., 2006a. Reflexionsseismische Untersuchungen der Cuxhavener Rinne bei Midlum 2005. Technischer Bericht, GGA-Institut, Archiv-Nr. 126 015 (Hannover).
Rumpel, H.-M., Binot, F., Gabriel, G., Hinsby, K., Siemon, B., Steuer, A. & Wiederhold, H., 2006b. Cuxhavener Rinne. In: Kirsch, R., Rumpel, H.-M., Scheer, W. & Wiederhold, H. (eds): BurVal Working Group: Groundwater resources in buried valleys – a challenge for geosciences. Bonifatius GmbH (Hannover): 227240.
Rumpel, H.-M., Binot, F., Gabriel, G., Siemon, B., Steuer, A. & Wiederhold, H., 2009. The benefit of geophysical data for hydrogeological 3D modelling - an example using the Cuxhaven buried valley. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 160 (3): 259269.
Rundberg, Y. & Smalley, P.C., 1989. High-resolution dating of Cenozoic sediments from the northern North Sea using 87Sr/86Sr stratigraphy. AAPG Bulletin 73: 298308.
Russell, H.A.J., Brennand, T.A., Logan, C. & Sharpe, D.R., 1998. Standardization and assessment of geological descriptions from water well records, Greater Toronto and Oak Ridge Moraine areas, southern Ontario. In: Current Research, part E, Geological Survey of Canada, Paper 1998-E: 89–102.
Sandersen, P.B.E. & Jørgensen, F., 2003. Buried Quaternary valleys in western Denmark – occurrence and inferred implications for groundwater resources and vulnerability. Journal of Applied Geophysics 53: 229248.
Scheck-Wenderoth, M. & Lamarche, J., 2005. Crustal memory and basin evolution in the Central European Basin System-new insights from a 3D structural model. Tectonophysics 397: 143165.
Sengpiel, K.-P. & Siemon, B., 2000. Advanced inversion methods for airborne electromagnetics. Geophysics 65: 19831992.
Siemon, B., 2001. Improved and new resistivity-depth profiles for helicopter electromagnetic data. Journal of Applied Geophysics 46: 6576.
Siemon, B., 2005. Ergebnisse der Aeroelektromagnetik zur Grundwassererkundung im Raum Cuxhaven-Bremerhaven. Zeitschrift für Angewandte Geologie 1: 713.
Siemon, B., Stuntebeck, C., Sengpiel, K.-P., Röttger, B., Rehli, H.-J. & Eberle, D., 2002. Characterisation of hazardous waste sites using the BGR helicopter-borne geophysical system. Journal of Environmental and Engineering Geophysics 7: 169181.
Siemon, B., Eberle, D.G. & Binot, F., 2004. Helicopter-borne electromagnetic investigation of coastal aquifers in North-West Germany. Zeitschrift für geologische Wissenschaften 32: 385395.
Siemon, B., Christiansen, A.V. & Auken, E., 2009a. A review of helicopter-borne electromagnetic methods for groundwater exploration. Near Surface Geophysics 7: 629646.
Siemon, B., Auken, E. & Christiansen, A.V., 2009b. Laterally constrained inversion of helicopter-borne frequency-domain electromagnetic data. Journal of Applied Geophysics 67: 259268.
Siemon, B., Steuer, A., Ullmann, A., Vasterling, M. & Voß, M., 2011. Application of frequency-domain helicopter-borne electromagnetics for groundwater exploration in urban areas. Physics and Chemistry of the Earth 36: 13731385.
Sørensen, K. & Auken, E., 2004. SkyTEM - a new high-resolution helicopter transient electromagnetic system. Exploration Geophysics 35: 191199.
Sørensen, J.C., Gregersen, U., Breiner, M. & Michelsen, O., 1997. High-frequency sequence stratigraphy of Upper Cenozoic deposits in the central and southeastern North Sea areas. Marine and Petroleum Geology 14 (2): 99123.
Stackebrandt, W., 2009. Subglacial channels of Northern Germany – a brief review. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 160 (3): 203210.
Steuer, A., 2008. Joint application of ground based transient electromagnetics and airborne electromagnetics. PhD thesis, University of Cologne (Cologne).
Steuer, A., Siemon, B. & Auken, E., 2009. A comparison of helicopter-borne electromagnetics in frequency- and time-domain at the Cuxhaven valley in Northern Germany. Journal of Applied Geophysics 67: 194205.
Stoker, M.S., Hoult, R.J., Nielsen, T., Hjelstuen, B.O., Laberg, J.S., Shannon, P.M., Praeg, D., Mathiesen, A., Weering, T.C.E. van & McDonnell, A., 2005a. Sedimentary and oceanographic responses to early Neogene compression on the NW European margin. Marine Petroleum Geology 22: 10311044.
Stoker, M.S., Praeg, D., Hjelstuen, B.O., Laberg, J.S., Nielsen, T. & Shannon, P.M., 2005b. Neogene stratigraphy and the sedimentary and oceanographic development of the NW European Atlantic margin. Marine Petroleum Geology 22: 9771005.
Streif, H., 2004. Sedimentary record of Pleistocene and Holocene marine inundations along the North Sea coast of Lower Saxony, Germany. Quaternary International 112 (1): 328.
Tezkan, B., Mbiyah, M.H., Helwig, S.L. & Bergers, R., 2009. Time domain electromagnetic (TEM) measurements on a buried subglacial valley in Northern Germany by using a large transmitter size and a high current. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 160 (3): 271278.
Thöle, H., Gaedicke, C., Kuhlmann, G. & Reinhardt, L., 2014. Late Cenozoic sedimentary evolution of the German North Sea – A seismic stratigraphic approach. Newsletters on Sratigraphy 47 (3): 299329.
Tølbøll, R.J., 2007. The application of frequency-domain helicopter-borne electromagnetic methods to hydrogeological investigations in Denmark. PhD thesis, Department of Earth Sciences, University of Aarhus (Aarhus).
van der Vegt, P., Janszen, A. & Moscariello, A., 2012. Glacial tunnel valleys – current knowledge and future perspectives. In: Huuse, M., Redfern, J., Le Heron, D.P., Dixon, R.J., Moscariello, A. & Craig, J. (eds): Glaciogenic Reservoirs and Hydrocarbon Systems, Special Publications 368, Geological Society (London): 7597.
Venteris, E.R., 2007. Three-dimensional modeling of glacial sediments using public water-well data records: an integration of interpretive and geostatistical approaches. Geospheres 3: 456468.
Viezzoli, A., Christiansen, A.V., Auken, E. & Sørensen, K., 2008. Quasi-3D modeling of airborne TEM data by spatially constrained inversion. Geophysics 73 (3): F105–F113.
Walker, R.G. & Plint, A.G., 1992. Wave and storm-dominated shallow marine systems. In: Walker, R.G. & James, N.P. (eds): Facies Models: Response to Sea Level Change. Geological Association of Canada (St John's): 219238.
Wellmann, J.F. & Regenauer-Lieb, K., 2012. Effect of geological data quality on uncertainties in geological model and subsurface flow fields. PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30–February 1, 2012 SGP-TR-194.
West, G.F. & Macnae, J.C., 1991. Physics of the electromagnetic induction exploration method. In: Nabighian, M.N. & Corbett, J.D. (eds): Electromagnetic methods in applied geophysics. Investigations in geophysics, Society of Exploration Geophysicists 2: 5–45.
Wiederhold, H., Binot, F. & Kessels, W., 2005a. Die Forschungsbohrung Cuxhaven und das „Coastal Aquifer Testfield (CATField)“ – ein Testfeld für angewandte geowissenschaftliche Forschung. Zeitschrift für Angewandte Geologie 1: 35.
Wiederhold, H., Gabriel, G. & Grinat, M., 2005b. Geophysikalische Erkundung der Bremerhaven-Cuxhavener Rinne im Umfeld der Forschungsbohrung Cuxhaven. Zeitschrift für Angewandte Geologie 1: 2838.
Wingfield, R., 1990. The origin of major incisions within the Pleistocene deposits of the North Sea. Marine Geology 91: 3152.
Yilmaz, Ö., 2001. Seismic data analysis: processing, inversion and interpretation of seismic data. Society of Exploration Geophysicists (Tulsa): 2027 pp.
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.
Zhdanov, M.S., 2010. Electromagnetic geophysics: notes from the past and the road ahead. Geophysics 75 (5): 75A4975A66.

Keywords

Related content

Powered by UNSILO

Towards an improved geological interpretation of airborne electromagnetic data: a case study from the Cuxhaven tunnel valley and its Neogene host sediments (northwest Germany)

  • D. Steinmetz (a1), J. Winsemann (a1), C. Brandes (a1), B. Siemon (a2), A. Ullmann (a2) (a3), H. Wiederhold (a3) and U. Meyer (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.