Skip to main content Accessibility help

Thin section petrography and chemostratigraphy: Integrated evaluation of an upper Mississippian mudstone dominated succession from the southern Netherlands

  • C.J. Nyhuis (a1), D. Riley (a2) and A. Kalasinska (a3)


Sedimentological data acquired by thin section petrography is a rich source of information to better understand and interpret depositional environments that are dominated by fine-grained deposits. This study provides an evaluation of the sedimentological and geochemical changes recorded over Upper Viséan to Lower Namurian successions preserved in a core section from a well drilled in the southern part of the Netherlands. Facies analysis and the recognition of microfacies associations allow detailed interpretations of depositional environments. Interpretation of additional geochemical data acquired by portable X-ray fluorescence analyses has resulted in a chemostratigraphic zonation for the core section. The zonation reflects stratigraphic changes in the mineralogy of the sedimentary successions. Integration of the microfacies associations and the chemostratigraphic zonation has led to the identification of three so-called depositional zones, which show the development of depositional settings from Late Viséan to Early Namurian times. Depositional Zone 1 consists of fine-grained turbiditic limestones and mudstones deposited in a distal carbonate ramp setting during Latest Viséan times. The overlying Depositional Zone 2 corresponds to the Geverik Member (Lower Namurian) and is particularly heterogeneous in geochemical and lithological terms: the zone reflects a complex interplay between different parameters such as sediment source, transport mechanisms and oxygen content that are assumed to be governed by fluctuating sea levels and changing depositional environments (from basinal to shallow marine settings). Sandy lenticular mudstones are predominant in the lower part of Depositional Zone 2 and show that sedimentation was via erosive bedload, whilst the common fossiliferous mudstones present within the upper part of the same zone yield evidence for increased endobenthic activity in dysoxic conditions. The successions assigned to Depositional Zone 3 ( = Epen Formation – Namurian) are the products of cyclic sedimentation of a terrestrial sourced delta.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Thin section petrography and chemostratigraphy: Integrated evaluation of an upper Mississippian mudstone dominated succession from the southern Netherlands
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Thin section petrography and chemostratigraphy: Integrated evaluation of an upper Mississippian mudstone dominated succession from the southern Netherlands
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Thin section petrography and chemostratigraphy: Integrated evaluation of an upper Mississippian mudstone dominated succession from the southern Netherlands
      Available formats


Corresponding author

*Corresponding author. Email:


Hide All
Abouelresh, M.O. & Slatt, R.M., 2012. Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas. AAPG Bulletin 96: 122.
Amler, M., 2006. Bivalven und Rostroconchien. In: Amler, M.R.W. & Stoppel, D. (eds): Stratigraphie von Deutschland VI, Unterkarbon (Mississippium). Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 41: 121146.
Blatt, H., 1992. Sedimentary Petrology. Freeman and Co. (New York): 514 pp.
Burst, J.F., 1965. Subaqueously formed shrinkage cracks in clay. Journal of Sedimentary Research 35: 348353.
Caplan, M.L. & Bustin, R.M., 2001. Palaeoenvironmental and palaeoceanographic controls on black, laminated mudrock deposition: example from Devonian–Carboniferous strata, Alberta, Canada. Sedimentary Geology 145: 4572.
Davies, S.J., Leng, M.J., Macquaker, J.H.S. & Hawkins, K., 2012. Sedimentary process control on carbon isotope composition of sedimentary organic matter in an ancient shallow-water shelf succession. Geochemistry, Geophysics, Geosystems 13: 15252027.
Davydov, V.I., Korn, D. & Schmitz, M.D., 2012. The Carboniferous Period. In: Gradstein, F., Ogg, J., Schmitz, M. & Ogg, G. (eds): The Geological Time Scale. Elsevier (Amsterdam): 603651.
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (ed.): Classification of carbonate rocks: American Association of Petroleum Geologists Memoir: 108121.
Gerling, P., Geluk, M.C., Kockel, F., Lokhorst, A., Lott, G.K. & Nicholson, R.A., 1999. ‘NW European Gas Atlas’ – New implications for the Carboniferous gas plays in the western part of the Southern Permian Basin. In: Fleet, A.J. & Boldy, S.A.R. (eds): Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference. Geological Society (London): 799808.
Hartwig, A., Könitzer, S., Boucsein, B., Horsfield, B. & Schulz, H.-M., 2010. Applying classical shale gas evaluation concepts to Germany – Part II: Carboniferous in Northeast Germany. Chemie der Erde 70: 93106.
Herbig, H.-G., 2011. Stratigraphische Sequenzen und Bioevents im Kulmbecken des Rheinischen Schiefergebirges (Mississippium, Deutschland). In: Ehrmann, W. & Röhling, H.-G. (eds): 100 Jahre Hermann Credner-Stiftung der Deutschen Gesellschaft für Geowissenschaften (Beiträge des Festkolloquiums am 4. und 5. November in Leipzig). Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 77: 3739.
Hovikoski, J., Lemiski, R., Gingras, M., Pemberton, G. & MacEachern, J.A., 2008. Ichnology and sedimentology of a mud-dominated deltaic coast: Upper Cretaceous Alderson Member (Lea Park Fm), Western Canada. Journal of Sedimentary Research 78: 803824.
Kerschke, D. & Schulz, H.-M., 2013. The shale gas potential of Tournaisian, Visean, and Namurian black shales in North Germany: baseline parameters in a geological context. Environmental Earth Sciences 70: 38173837.
Kombrink, H., Leever, K.A., Van Wees, J.-D., Van Bergen, F., David, P. & Wong, T.E., 2008a. Late Carboniferous foreland basin formation and Early Carboniferous stretching in northwestern Europe: inferences from quantitative subsidence analyses in the Netherlands. Basin Research 20: 377395.
Kombrink, H., van Os, B.J.H., van der Zwan, C.J. & Wong, T. E., 2008b. Geochemistry of marine and lacustrine bands in the Upper Carboniferous of the Netherlands. Netherlands Journal of Geosciences—Geologie en Mijnbouw 87: 300322.
Kombrink, H., Besly, B.M., Collinson, J.D., Den Hartog Jager, D.G., Drozdzewski, G., Dusar, M., Hoth, P., Pagnier, H.J.M., Stemmerik, L., Waksmundzka, M.I. & Wrede, V., 2010. Carboniferous. In: Doornenbal, J.C. & Stevenson, A.G. (eds): Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten): 8199.
Könitzer, S.F., Davies, S.J., Stephenson, M.H. & Leng, M.J., 2014. Depositional controls on mudstone lithofacies in a basinal setting: Implications for the delivery of sedimentary organic matter. Journal of Sedimentary Research 84: 198214.
Korn, D., 2008. Early Carboniferous (Mississippian) calciturbidites in the northern Rhenish Mountains (Germany). Geological Journal 43: 151173.
Kraft, T., 1992. Faziesentwicklung vom Flözleeren zum Flözführenden Oberkarbon (Namur B-C) im südlichen Ruhrgebiet. PhD thesis, Ruhr-Universität Bochum: 255 pp.
Kramers, L., van Wees, J.-D., Wassing, B., Kronimus, A., Urai, J.L., Kukla, P.A. & Bekendam, R., 2011. Studie naar Haalbaarheid van OPAC op de locatie Graetheide en nabije omgeving. rapport nr. TNO-060-UT-2011–01251 (Utrecht).
Krauskopf, K.B., 1956. Dissolution and precipitation of silica at low temperatures. Geochimica et Cosmochimica Acta 10: 126.
Langenaeker, V. & Dusar, M., 1992. Subsurface facies analysis of the Namurian and earliest Westphalian in the western part of the campine Basin (N Belgium). Geologie en Mijnbouw 71: 161172.
Lemiski, R.T., Hovikoski, D.J., Pemberton, D.S.G. & Gingras, D. M., 2011. Sedimentological ichnological and reservoir characteristics of the low-permeability, gas-charged Alderson Member (Hatton gas field, southwest Saskatchewan): Implications for resource development. Bulletin of Canadian Petroleum Geology 59: 2753.
Littke, R., Krooss, B., Uffmann, A.K., Schulz, H.-M. & Horsfield, B., 2011. Unconventional gas resources in the Paleozoic of Central Europe. Oil and Gas Science Technology – Review IFP Energies Nouvelles 66: 953977.
Loucks, R.G. & Ruppel, S.C., 2007. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-watershale-gas succession in the Fort Worth Basin, Texas. AAPG Bulletin 4: 579601.
Lovley, D.R., Phillips, E.J.P., Gorby, Y.A. & Landa, E.R., 1991. Microbial reduction of uranium. Nature 350: 413416.
MacEachern, J.A., Pemberton, S.G., Bann, K.L. & Gingras, M.K., 2009. Departures from the archetypal ichnofacies: Effective recognition of physio-chemical stresses in the rock record. In: MacEachern, J.A., Bann, K.L., Gingras, M.K. & Pemberton, S.G. (eds): Applied Ichnology. SEPM Short Course Notes 52: 6594.
Mathes-Schmidt, M.E., 2000. Mikrofazies, Sedimentationsgeschehen und paläogeographische Entwicklung im Verlauf des oberen Viséums im Untergrund der Niederrheinischen Bucht und des Campine-Beckens. PhD thesis. Rheinisch-Westfälisch Technische Hochschule (Aachen): 245 pp.
Meischner, K.D., 1964. Allodapische Kalke, Turbidite in Riff-Nahen Sedimentations-Becken. In: Bouma, A.H. & Brouwer, A. (eds): Developments in Sedimentology. Elsevier (Amsterdam): 156191.
Nyhuis, C.J., Rippen, D. & Denayer, J., 2014. Facies characterization of organic-rich mudstones from the Chokier Formation (lower Namurian), south Belgium. Geologica Belgica 17: 311322.
Nyhuis, C.J., Amler, M.R.W. & Herbig, H.-G., 2015. Facies and palaeoecology of the late Viséan (Mississippian) Actinopteria Black Shale Event in the Rhenish Mountains (Germany). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 166: 5569.
Pearce, T.J., Wray, D.S., Ratcliffe, K.T., Wright, D.K. & Moscariello, A., 2005. Chemostratigraphy of the Upper Carboniferous Schooner Formation, southern North Sea. In: Collinson, J.D., Evans, D.J., Holliday, D.W. & Jones, N.S. (eds): Carboniferous hydrocarbon geology: the southern North Sea and surrounding onshore areas. Yorkshire Geological Society, Occasional Publications Series 7: 147163.
Piper, D.J.W. & Stow, D.A.V., 1991. Fine-grained turbidites. In: Einsele, G., Ricken, W. & Seilacher, A. (eds): Cycles and Events in Stratigraphy. Springer (Heidelberg): 361376.
Potts, P.J. & Kane, J.S., 2003. International association of Geoanalysis Certificate of Analysis: Certified Reference Material OU-6 (Penrhyn Slate). Geostandards and Geoanalytical Research 29: 233236.
Ramsbottom, W.H.C., 1977. Major cycles of transgression and regression (mesothems) in the Namurian. Proceedings of the Yorkshire Geological Society 41: 261–291.
Ramsbottom, W.H.C., 1979. Rates of transgression and regression in the Carboniferous of NW Europe. Journal of the Geological Society 136: 147153.
Ratcliffe, K.T. & Wright, A.M., 2012. Unconventional methods for unconventional plays:using elemental data to understand shale resource plays Part 1. PESA News Resources April/May 2012: 89–93.
Ratcliffe, K.T., Wright, A. M., Montgomery, P., Palfrey, A., Vonk, A., Vermeulen, J. & Barrett, M., 2010. Application of chemostratigraphy to the Mungaroo Formation, the Gorgon Field, offshore Northwest Australia. Australian Petroleum Production and Exploration Association Journal 50: 371385.
Ratcliffe, K.T., Woods, J. & Rice, C., 2012a. Determining well-bore pathways during multilateral drilling campaigns in shale resource plays: an example using chemostratigraphy from the Horn River Formation, British Columbia, Canada. Eastern Australasian Basins Symposium IV: 143–148.
Ratcliffe, K.T., Wright, A.M. & Schmidt, K., 2012b. Application of inorganic whole-rock geochemistry to shale resource plays: an example from the Eagle Ford Shale Formation, Texas. The Sedimentary Record 10: 49.
Reed, F.S. & Mergner, J.L., 1953. Preparation of rock thin sections. American Mineralogist 38: 11841203.
Rodríguez-Tovar, F.J. & Uchman, A., 2010. Ichnofabric evidence for the lack of bottom anoxia during the lower Toarcian. Oceanic Anoxic Event in the Fuente de la Vidriera section, Betic Cordillera, Spain. Palaios 25: 576587.
Röhl, H.-J., Schmid-Röhl, A., Oschmann, W., Frimmel, A. & Schwark, L., 2001. The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 165: 2752.
Ross, C.A. & Ross, J.R.P., 1985. Late Paleozoic depositional sequences are synchronous and worldwide. Geology 13: 194197.
Rowe, H., Ruppel, S., Rimmer, S. & Loucks, R., 2009. Core-based chemostratigraphy of the Barnett Shale, Permian Basin, Texas. Gulf Coast Association of Geological Societies Transactions 59: 675686.
Rowe, H., Hughes, N. & Robinson, K., 2012. The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry. Chemical Geology 324–325: 122–131.
Ruprecht, L., 1937. Die Biostratigraphie des obersten Kulm im Sauerlande. Jahrbuch der Preußischen Geologischen Landesanstalt (für 1936) 57: 238283.
Schieber, J., 1989. Facies and origin of shales from the Mid-Proterozoic Newland Formation, Belt Basin, Montana, USA. Sedimentology 36: 203219.
Schieber, J., 1999. Distribution and deposition of mudstone facies in the Upper Devonian Sonyea Group of New York. Journal of Sedimentary Research 69: 909925.
Schieber, J., Southard, J.B. & Schimmelmann, A., 2010. Lenticular shale fabrics resulting from intermittent erosion of muddy sediments–Comparing observations from flume experiments to the rock record. Journal of Sedimentary Research 80: 119128.
Seilacher, A., 1967. Biogenic sedimentary structures. In: Imbrie, J. & Newell, N. (eds): Approaches to Paleoecology. Wiley (New York): 296316.
Stow, D.A.V. & Shanmugam, G., 1980. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments. Sedimentary Geology 25: 2342.
Svendsen, J., Friis, H., Stollhofen, H. & Hartley, N., 2007. Facies discrimination in a mixed fluvio-eolian setting using elemental whole-rock geochemistry–Applications for reservoir characterization. Journal of Sedimentary Research 77: 2333.
Trabucho-Alexandre, J., Dirkx, R., Veld, H., Klaver, G. & de Boer, P.L., 2012. Toarcian black shales in the Dutch Central Graben: Record of energetic, variable depositional conditions during an oceanic anoxic event. Journal of Sedimentary Research 82: 104120.
Tribovillard, N., Algeo, T.J., Lyons, T. & Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232: 1232.
Uffmann, A.K., Littke, R. & Rippen, D., 2012. Mineralogy and geochemistry of Mississippian and Lower Pennsylvanian Black Shales at the Northern Margin of the Variscan Mountain Belt (Germany and Belgium). International Journal of Coal Geology 103: 92108.
Van Adrichem Boogaert, H.A. & Kouwe, W.F.P., 1993. Stratigraphic nomenclature of the Netherlands, revision and update by RGD and NOGEPA. Mededelingen Rijks Geologische Dienst 50: 140.
Van Amerom, H.W.J., 1986. Cumulatief rapport betreffende de stratigrafie van de boring Geverik. Internal report 2132. Rijks Geologische Dienst (Heerlen).
Van Bergen, F., 2011. Evaluation of the potential of shale gas in the Netherlands. Geophysical Research Abstracts 13: EGU 2011–7793–2011.
Van Tongeren, P.C.H. & Pagnier, H.J.M., 1987. Onderzoeksresultaten van boring Geverik-1 (OPAC-studie Zuid-Limburg). Internal report 2144. Rijks Geologische Dienst (Heerlen).
Wetzel, A. & Uchmann, A., 1998. Biogenic sedimentary structures in mudstones – an overview. In: Schieber, J., Zimmerle, W. & Sethi, P. (eds): Shales and Mudstones, Vol. 1. Schweizerbart (Stuttgart): 351369.
Wignall, P.B., 1990. Observations on the evolution and classification of dysaerobic communities. In: Miller, W. III, (ed.): Paleocommunity temporal dynamics: The long-term development of multispecies assemblies. Paleontological Society Special Publications 5: 99111.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed