Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T15:23:06.302Z Has data issue: false hasContentIssue false

Paleoseismological Investigations at the Rurrand Fault, Lower Rhine Embayment

Published online by Cambridge University Press:  01 April 2016

K. Lehmann*
Affiliation:
Geological Survey of Northrhine-Westphalia, De-Greiff-Str. 195, D-47803 KREFELD, Germany
J. Klostermann
Affiliation:
Geological Survey of Northrhine-Westphalia, De-Greiff-Str. 195, D-47803 KREFELD, Germany
R. Pelzing
Affiliation:
Geological Survey of Northrhine-Westphalia, De-Greiff-Str. 195, D-47803 KREFELD, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

From 1998 to 2000, we have studied the evidence for large paleoearthquakes at the Rurrand Fault. This fault represents the eastern border of the Roer Valley Graben, which is the tectonically most active region in the Lower Rhine Embayment. The purpose of our paleoseismological studies is to enlarge the seismicity data base for this region beyond instrumental records and historical reports using indications of surface-faulting events from stratigraphie conditions at active faults. Larger time spans considered in the earthquake catalogue will enable a more reliable statistical analysis which is required for seismic hazard assessment. Based on analyses of geological data and géomorphologie investigations, detailed geophysical surveying was carried out along the southern Rurrand Fault segment for the selection of a site appropriate to paleoseismological studies. Mapping of physical parameter contrasts with seismic reflection, VES, ERT, and GPR measurements along fault-crossing profiles inferred position and near-surface structure of the fault. At the site promising the best conditions, a trench was excavated across the fault near the city of Jiilich, Germany. Within a depth of about 4 m, the Rurrand Fault was exposed in an about 50 m-wide system of faults and fault zones, affecting the stratigraphie sequence with various displacement characteristics and amounts of throw. According to heavy mineral analyses, the deposition time of most the exposed sediment strata was assigned to Pliocene and Lower Pleistocene time. These geological units are covered by loess layers deposited through so-lifluction processes during the Weichselian glacial, i.e. some tens of ka B.P., or – with lower probability – during the Saalian glacial. Several faults which had also affected the loess reflect younger fault activity. However, clear paleoseismic features were not observed in the trench, thus an unambiguous proof of the occurrence of coseismic fault displacements could not be furnished. Recently, differential subsidence due to drainage takes place in the surroundings of the nearby opencast mining. An amount of some 0.35 m, concentrated in a very narrow lateral zone, has been observed during the last 40 a at about 1 km distance from the trench position. To date, the subsidence could not be clearly located in the trench exposure. Results from geodetic levelling campaigns will help to determine the offset residuals and to gain better insight into the ruling displacement processes at the Rurrand Fault.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2001

References

Ahorner, L., 1962. Untersuchungen zur quartaren Bruchtektonik der Niederrheinischen Bucht. Eiszeitalter und Gegenwart 13: 24105.CrossRefGoogle Scholar
Ahorner, L., 1975. Present-day stress field and seismotectonic block movements along major fault zones in central Europe. Tectonophysics 29: 233249.Google Scholar
Ahorner, L., 1983. Historical seismicity and present-day mi-croearthquake activity of the Rhenish Massif, Central Europe. In: Fuchs, K., von Gehlen, K., Mälzer, H., Murawski, H., & Sem-mel, A. (eds.): Plateau Uplift. The Rhenish Shield -A Case History. Springer (Berlin), 198221.Google Scholar
Alexandre, P., 1994. Historical seismicity of the lower Rhine and Meuse valleys from 600 to 1525. A new critical review. Geologie en Mijnbouw 73: 431438.Google Scholar
Boenigk, W., Kowalczyk, G. & Brunnacker, K., 1972. Zur Geologie des Altpleistozäns der Niederrheinischen Bucht. Zeitschrift der Deutschen Geologischen Gesellschaft 123: 119161.Google Scholar
Bonino, E. & Pirard, E., 2001. A Geological information system for paleoseismological data retrieving and analysis. Cahiers du Centre Européen de Geodynamique et de Séismologie, 18: 2325.Google Scholar
Cai, J., McMechan, G.A. & Fisher, M.A., 1996. Application of ground-penetrating radar to investigation of near-surface fault properties in the San Francisco Bay region. Bulletin of the Seismological Society of America 86: 14591470.Google Scholar
Camelbeeck, T. & Meghraoui, M., 1996. Large earthquakes in northern Europe more likely than once thought. EOS Transactions of the American Geophysical Union 77: 405,409.Google Scholar
Camelbeeck, T. & Meghraoui, M., 1998. Geological and geophysical evidence for large paleo-earthquakes with surface faulting in the Roer Graben (northwest Europe). Geophysical Journal International 132, 347362.Google Scholar
Camelbeeck, T., Martin, H., Vanneste, K., Verbeek, K. & Megraoui, M., 2001. Geomorphic evidence of active normal faulting in slow-deformation areas: the example of the Lower Rhine Embayment. Netherlands Journal of Geosciences / Geologie en Mijnbouw, this issue.Google Scholar
Campbell, J., Rumpel, H.-J., Fabian, M., Görres, B., Keysers, Ch.J., Kotthoff, H. & Lehmann, K., submitted. Recent movement patterns of the Lower Rhine Basin from GPS data. Geologie en Mijnbouw / Netherlands Journal of Geosciences.Google Scholar
Commission of the European Communities (ed.), 2000. PALEOSIS – Evaluation of the potential for large earthquakes in regions of present day low seismicity activity in Europe. Final report, project no. ENV4-CT97–0578. Directorate-General XII for Science, Research, and Development (Brussels): 135pp.Google Scholar
Davis, J.L. & Annan, A.P., 1989. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting 37: 531551.Google Scholar
Demanet, D., Renardy, F, Vanneste, K., Jongmans, D., Camelbeeck, T. & Meghraoui, M., 2001. The use of geophysical prospecting for imaging active faults in the Roer Graben, Belgium. Geophysics 66: 7889.Google Scholar
Demanet, D., Evers, L.G., Teerlynck, H., Dost, B. & Jongmans, D., 2001. Geophysical investigation along the Peel Boundary Fault (The Netherlands) for a paleoseismological study. Netherlands Journal of Geosciences / Geologie en Mijnbouw, 80, 129138.Google Scholar
Forman, S.L., Pierson, J. & Lepper, K., 1997. Luminescence geochronology. In: Sowers, J.M., Noller, J.S. & Lettis, W.R. (eds.): Dating and Earthquakes: Reviews of Quaternary Geochronology and its Application to Paleoseismology. U.S. Nuclear Regulatory Commission (Washington): 22592287.Google Scholar
Forschungszentrum Jülich GmbH, 1999. Gutachten über die Höhenbeobachtungen im Bereich des Forschungszentrums Jülich. (Jülich): unpublished.Google Scholar
Forschungszentrum Jülich GmbH, 2000. Gutachten über die Höhenbeobachtungen und Höhenänderungen im Bereich des Forschungszentrums Jülich. (Jülich): unpublished.Google Scholar
Geluk, M.C., Duin, E.J.Th., Dusar, M., Rijkers, R.H.B., Van den Berg, M.W. & Van Rooijen, P., 1994. Stratigraphy and tectonics of the Roer Valley Graben. Geologie en Mijnbouw 73: 129141.Google Scholar
Geologisches Landesamt Nordrhein-Westfalen, 1990. Geologische Karte von Nordrhein-Westfalen 1:100,000, Blatt C5102 Mönchengladbach. (Krefeld).Google Scholar
Görres, B. & Campbell, J., 1998: Bestimmung vertikaler Punktbe-wegungen aus GPS-Messungen, Zeitschrift für Vermessungswesen 123:222230.Google Scholar
Herbst, G., 1958. Das Alter der Bewegungen am Rurrand bei Hückelhoven. Fortschritte in der Geologie von Rheinland und Westfalen 2: 641643.Google Scholar
Hinzen, K.-G., Reamer, S.K. & Rose, Th., 2001. Geomorphological aspects of site selection at the Rurrand Fault for paleoseismological investigations. Netherlands Journal of Geosciences / Geologie en Mijnbouw, 80, 109117.Google Scholar
Klostermann, J., 1990. Geologischer Bau – Lagerungsverhältnisse des Deckgebirges. In: Nordrhein-Westfalen, Geologisches Landesamt (ed.): Geologische Karte von Nordrhein-Westfalen 1:100 000, Erlàuterungen zu Blatt C5102 Mõnchengladbach. (Krefeld): 3437.Google Scholar
Klostermann, J., 1992. Das Quartär der Niederrheinischen Bucht. Geologisches Landesamt Nordrhein-Westfalen (Krefeld): 200pp.Google Scholar
Klostermann, J., 1995. Nordrhein-Westfalen. In: Benda, L. (ed.): Das Quartãr Deutschlands. Gebrüder Bornträger (Berlin, Stuttgart): 5994.Google Scholar
Klostermann, J., Kremers, J. & Roder, R., 1998. Rezente tektoni-sche Bewegungen in der Niederrheinischen Bucht. Fortschritte in der Geologie von Rheinland und Westfalen 37: 557571.Google Scholar
Landesvermessungsamt Nordrhein-Westfalen (1972): Deutsche Grundkarte 1:5000. Sections Stetternich, Neulich, Daubenrath, Hambach. (Bonn).Google Scholar
Lehmann, K., Klostermann, J., Pelzing, R. & Hinzen, K.-G., 2001. Paleoseismological investigations at the Rurrand Fault, FRG. Cahiers du Centre Européen de Géodynamique et de Séismologie 18:9396.Google Scholar
Loke, M.H. & Barker, R.D., 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting 44: 131152.Google Scholar
McCalpin, J.P., 1996. Paleoseismology. Academic Press (San Diego): 583 pp.Google Scholar
Meghraoui, M., Camelbeeck, T., Vanneste, K., Brondeel, M. & Jongmans, D., 2000. Active faulting and paleoseismology along the Bree fault, lower Rhine graben, Belgium. Journal of Geophysical Research 105, (B6), 1380913841.Google Scholar
Meidow, H., 1995. Rekonstruktion und Reinterpretation von his-torischen Erdbeben in den nördlichen Rheinlanden unter Berücksichtigung der Erfahrungen bei dem Erdbeben von Roer-mond am 13. April 1992. PhD thesis, Faculty of Mathematics and Natural Sciences, Cologne University: 305 pp.Google Scholar
Pelzing, R., 1994. Source parameter of the 1992 Roermond earthquake, the Netherlands, and some of its aftershocks recorded at the stations of the Geological Survey of Northrhine-Westphalia. Geologie en Mijnbouw 73: 215223.Google Scholar
Quitzow, H.W. & Vahlensieck, O., 1955. Über pleistozäne Gebirgs-bildung und rezente Krustenbewegungen in der Niederrheinischen Bucht. Geologische Rundschau 43: 5667.Google Scholar
Braunkohlenwerke, AG. Rheinische, 1987. Diverse borehole sections. (Cologne, unpublished).Google Scholar
Braunkohlenwerke, AG. Rheinische, 2000. Personal communication. (Cologne).Google Scholar
Sieberg, A., 1940. Beiträge zum Erdbebenkatalog Deutschlands und der angrenzenden Gebiete für die Jahre 58 bis 1799. Mit-teilungen des Deutschen Reichs-Erdbebendienstes, Heft 2 (Berlin) : 112 pp.Google Scholar
Sponheuer, W., 1952. Erdbebenkatalog Deutschlands und der angrenzenden Gebiete für die Jahre 1800 bis 1899. Mitteilungen des Deutschen Erdbebendienstes, Heft 3 (Berlin): 185 pp.Google Scholar
Van den Berg, M.W., 1994. Neotectonics of the Roer Valley rift system. Style and rate of crustal deformation inferred from syn-tec-tonic sedimentation. Geologie en Mijnbouw 73: 143156.Google Scholar
Van den Berg, M.W., Groenewoud, W., Lorenz, G.K., Lubbers, P.J., Brus, D.J. & Kroonenberg, S.B., 1994. Patterns and velocity of recent crustal movements in the Dutch part of the Roer Valley rift system. Geologie en Mijnbouw 73: 157167.Google Scholar
Van den Berg, M.W., Vanneste, K., Dost, B., Lokhorst, A., Van Eijck, M. & Verbeeck, K., 2001. Paleoseismic investigation along the Peel Boundary Fault: geological setting, site selection and trenching results. Netherlands Journal of Geosciences / Geologie en Mijnbouw, 81,1, 2002.Google Scholar
Vandenberghe, J., 1982. Geoelectric investigations of a fault system in Quaternary deposits. Geophysical Prospecting 30: 879897.Google Scholar
Vanneste, K., Meghraoui, M. & Camelbeeck, T., 1999. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics 309, 5779.Google Scholar
Vanneste, K. & Verbeeck, K., 2001. Paleoseismological analysis of the Rurrand Fault near Jülich, Roer Valley graben, Germany: Coseismic or aseismic faulting history? Netherlands Journal of Geosciences / Geologie en Mijnbouw, 80, 155169.Google Scholar
Wrede, V. & Hilden, H.D., 1988. Geologische Entwicklung. In: Nordrhein-Westfalen, Geologisches Landesamt (ed.): Geologie am Niederrhein. (Krefeld): 714.Google Scholar
Ziegler, P.A., 1994. Cenozoic rift system of western and central Europe: an overview. Geologie en Mijnbouw 73: 99127.Google Scholar
Zijerveld, L., Stephenson, R., Cloetingh, S., Duin, E. & Van den Berg, M.W., 1992. Subsidence analysis and modelling of the Roer Valley Graben (SE Netherlands). Tectonophysics 208: 159171.Google Scholar