Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T12:14:23.758Z Has data issue: false hasContentIssue false

Late Moscovian terrestrial biotas and palaeoenvironments of Variscan Euramerica

Published online by Cambridge University Press:  24 March 2014

C.J. Cleal*
Affiliation:
Department of Biodiversity & Systematic Biology, National Museum Wales, Cardiff CF10 3NP, UK
S. Opluštil
Affiliation:
Faculty of Sciences, Charles University in Prague, Albertov 6, 128 43 Praha 2, Czech Republic
B.A. Thomas
Affiliation:
Institute of Biological, Ecological and Rural Sciences, Aberystwyth University, Llanbadarn Fawr, Aberystwyth SY23 3AL, UK
Y. Tenchov
Affiliation:
Geological Institute, Bulgarian Academy of Sciences, G. Bonchev Street Block 24, 1113 Sofia, Bulgaria
O.A. Abbink
Affiliation:
TNO, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
J. Bek
Affiliation:
Department of Palaeobiology & Palaeoecology, Institute of Geology, Academy of Sciences of the Czech Republic, Rozvojová 269, 165 00 Praha 6, Czech Republic
T. Dimitrova
Affiliation:
Geological Institute, Bulgarian Academy of Sciences, G. Bonchev Street Block 24, 1113 Sofia, Bulgaria
J. Drábková
Affiliation:
Czech Geological Survey, Klárov 131/3, 118 21 Praha 1, Czech Republic
Ch. Hartkopf-Fröder
Affiliation:
Geologischer Diest NRW, De-Greiff Straße 195, D-47803 Krefeld, Germany
T. van Hoof
Affiliation:
TNO, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
A. Kędzior
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Kraków Research Centre, Senacka1, 31-002 Kraków, Poland
E. Jarzembowski
Affiliation:
Maidstone Museum, St Faith's Street, Maidstone ME14 1LH, UK
K. Jasper
Affiliation:
Geologischer Diest NRW, De-Greiff Straße 195, D-47803 Krefeld, Germany
M. Libertin
Affiliation:
National Museum, Václavské nám stí 68, 115 79 Praha 1, Czech Republic
D. McLean
Affiliation:
MB Stratigraphy Ltd, 11 Clement Street, Sheffield S9 5EA, UK
M. Oliwkiewicz-Miklasinska
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Kraków Research Centre, Senacka1, 31-002 Kraków, Poland
J. Pšenička
Affiliation:
Palaeontology Department, West Bohemian Museum in Plzeň, Kopeckého sady 2, 301 36 Plzeň, Czech Republic
B. Ptak
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Upper Silesian Branch, Sosnowiec, Poland
J.W. Schneider
Affiliation:
Department of Palaeontology, Geological Institute, Technische Universität Bergakademie Freiberg, Bernard-von-Cotta Straße 2, 09599 Freiberg, Germany
S. Schultka
Affiliation:
Forschungsinstitut Museum für Naturkunde, Invalidenstraße 43, D-10115 Berlin, Germany
Z. Šimůnek
Affiliation:
Czech Geological Survey, Klárov 131/3, 118 21 Praha 1, Czech Republic
D. Uhl
Affiliation:
Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt am Main, Germany
M.I. Waksmundzka
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Warsaw, Poland
I. van Waveren
Affiliation:
Naturalis, P.O. Box 9517, 2300 RA Leiden, the Netherlands
E. L. Zodrow
Affiliation:
Palaeobotanical Laboratory, Cape Breton University, Sydney NS, Canada B1P 6L2
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A synthesis of the upper Moscovian sedimentological and palaeontological record of terrestrial habitats across the Variscan foreland and adjacent intramontane basins (an area which is referred to here as Variscan Euramerica) suggests a contraction and progressive westward shift of the coal swamps. These changes can be correlated with pulses of tectonic activity (tectonic phases) resulting from the northwards migration of the Variscan Front. This tectonic activity caused disruption to the landscapes and drainage patterns where the coal swamps were growing, which became less suitable to growth of the dominant plants of the swamps, the arborescent lycopsids. They were progressively replaced by vegetation dominated by marattialean ferns, which through a combination of slower growth and larger canopies resulted in less evapo-transpiration. This in turn caused localised reductions in rainfall, which further affected the ability of the lycopsids to dominate the swamp vegetation. These changes were initially localised and where the coal swamps were able to survive the lycopsids and pteridosperms show little change in either species diversity or biogeography, indicating that at this time there was minimal regional-scale climate change taking place. By Asturian times, however, the process had accelerated and the swamps in Variscan Euramerica became progressively replaced by predominantly conifer and cordaite vegetation that favoured much drier substrates. Except in localised pockets in intramontane basins of the Variscan Mountains, the last development of coal swamps in Variscan Euramerica was of early Cantabrian age. Further west, lycopsid-dominated coal swamps persisted for a little longer. The last remnants of the lycopsid-dominated coal swamps in the Illinois Basin disappeared probably by middle-late Cantabrian times, as the cycle of contracting wetlands and regional reductions in rainfall generated its own momentum, and no longer needed the impetus of tectonic instability. This tectonically-driven decline in the Euramerican coal swamps was probably responsible for an annual increase in atmospheric CO2 of c. 0.37 ppm, and may have been implicated in the marked increase in global temperatures near the Moscovian – Kasimovian boundary, and the onset of the Late Pennsylvanian interglacial.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2009

References

Abbink, O.A., 2003. Palynological re-study of well Kemperkoul-1. Mededelingen Rijks Geologische Dienst 44–4: 119.Google Scholar
Abbott, M.L., 1958. The American species of Asterophyllites, Annularia and Sphenophyllum . Bulletin of American Paleontology 38: 289390.Google Scholar
Aitkenhead, N., Barclay, W.J., Brandon, A., Chadwick, R.A., Chisolm, J.I., Cooper, A.H. & Johnson, E.W., 2002. British Regional Geology: The Pennines and adjacent areas (4th edition). British Geological Survey (Keyworth): 206 pp.Google Scholar
Arber, E.A.N., 1912. The fossil plants of the Forest of Dean Coalfield. Proceedings of the Cotteswold Natural Field Club 17: 321332.Google Scholar
Arber, E.A.N., 1913. On the Fossil Floras of the Wyre Forest, with special reference to the geology of the coalfield and its relationships to the neighbouring Coal measure areas. Transactions of the Royal Society, London 204: 363445.Google Scholar
Arber, E.A.N., 1916. On the fossil floras of the Coal Measures of South Staffordshire. Transactions of the Royal Society, London 208: 127155.Google Scholar
Arens, N.C., 1997. Responses of leaf anatomy to light environment in the tee fern Cyathea caracasana (Cyatheaceae) and its application to some ancient seed ferns. Palaios 12: 8494.CrossRefGoogle Scholar
Arillo, A., Braukmann, C., Béthoux, O. & Schneider, J.W., 2007. Fossil insects from the Carboniferous of (the) Iberian Peninsula. In: Abstract Book Fossils x3. Vitoria-Gasteiz (Provincial Council of Álava): 198.Google Scholar
Arthaud, F. & Matte, P., 1977. Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a right-lateral shear zone between the Appalachians and the Urals. Geological Society of America Bulletin 88: 13051320.2.0.CO;2>CrossRefGoogle Scholar
Baker, R.A. & DiMichele, W.A., 1997. Biomass allocation in Late Pennsylvanian coal-swamp plants. Palaios 12: 127132.CrossRefGoogle Scholar
Barthel, M., 1962a. Mikropaläontologische Untersuchungen im Rotliegenden des Döhlener Beckens. Jahrbuch des Staatlichen Museums für Mineralogie und Geologie zu Dresden 1962: 157175.Google Scholar
Barthel, M., 1962b. Zur Kenntnis inkohlter Blätter der Gattung Cordaites Presl. Hallesches Jahrbuch für Mitteldeutsche Erdgeschichte 4: 3739.Google Scholar
Barthel, M., 1964. Coniferen- und Cordaiten-Reste aus dem Rotliegenden des Döhlener Beckens. Geologie 13: 6089.Google Scholar
Barthel, M., 1976. Die Rotliegendflora Sachsens. Abhandlungen des Staatlichen Museums für Geologie und Mineralogie zu Dresden 24: 1190.Google Scholar
Barthel, M., 1997. Epidermal structures of sphenophylls. Review of Palaeobotany and Palynology 95: 115127.CrossRefGoogle Scholar
Barthel, M., 2004. Die Rotliegendflora des Thüringer Waldes. Teil 2: Calamites und Lepidophyten. Veröffentlichungen Naturhistorisches Museum Schleusingen 19: 1948.Google Scholar
Bashforth, A.R., 2005. Late Carboniferous (Bolsovian) macroflora from the Barachois Group, Bay St. George Basin, southwestern Newfoundland, Canada. Palaeontographica Canadiana 24: 1123.Google Scholar
Bashforth, A.R. & Zodrow, E.L., 2007. Partial reconstruction and palaeoecology of Sphenophyllum costae (Middle Pennsylvanian, Nova Scotia, Canada). Bulletin of Geosciences 82: 365382.CrossRefGoogle Scholar
Batenburg, L.H., 1977. The Sphenophyllum species in the Carboniferous Flora of Holz (Westphalian D, Saar Basin, Germany). Review of Palaeobotany and Palynology 24: 6999.CrossRefGoogle Scholar
Beall, B.S., 1991. The Writhlington phalangiotarbids: their palaeobiological significance. Proceedings of the Geologists' Association 102: 161168.CrossRefGoogle Scholar
Becq-Giraudon, J.F., Montenat, Ch. & Van den Driessche, J., 1996. Hercynian high-altitude phenomena in the French Massif Central: the tectonic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 122: 227241.CrossRefGoogle Scholar
Beerling, D., 2007. The emerald planet – how plants changed Earth's history. Oxford University Press: 304 pp.CrossRefGoogle Scholar
Bek, J., 1996. Carboniferous fertile branch Sporangiostrobus feistmantelii (O. Feistmantel) Němejc and its miospores from the Kladno Basin, Bohemian Massif. Acta musei Nationalis Pragae. Series B. Historia Naturalis 51: 3751.Google Scholar
Bek, J. & Opluštil, S., 1998. Some lycopsid, sphenopsid and pteropsid fructifications and their miospores from the Upper Carboniferous basins of the Bohemian Massif. Palaeontographica, Abteilung B 248: 127161.CrossRefGoogle Scholar
Bek, J. & Opluštil, S., 2004. Palaeoecological constraints of some Lepidostrobus cones and their parent plants from the Late Palaeozoic continental basins of the Czech Republic. Review of Palaeobotany and Palynology 131: 4989.CrossRefGoogle Scholar
Bek, J., Opluštil, S. & Drábková, J., 2001. Two species of Selaginella cones and their spores from the Bohemian Carboniferous continental basins of the Czech Republic. Review of Palaeobotany and Palynology 114: 5781.CrossRefGoogle ScholarPubMed
Belcher, C.M. & McElwain, J.C., 2008. Limits for combustion in low O2 redefine palaeoatmospheric predictions for the Mesozoic. Science 321, 11971200 (plus erratum).CrossRefGoogle Scholar
Bell, W.A., 1938. Fossil flora of Sydney Coalfield, Nova Scotia. Canada Department of Mines and Resources, Geological Survey Memoir 215: 1334.Google Scholar
Bell, W.A., 1940. The Pictou Coalfield, Nova Scotia. Canada Department of Mines and Resources, Geological Survey Memoir 225: 1161.Google Scholar
Bertrand, P., 1914. Les zones végétales du terrain houiller du Nord de la France. Leur extension verticale par rapport aux horizons marins. Annales de la Société géologique du Nord 43: 208254.Google Scholar
Bertrand, P., 1919. Les zones végétales du terrain houiller du Nord de la France. Compte rendu de l'Académie des Sciences, Paris 168: 780782.Google Scholar
Bertrand, P., 1926. La zone á Mixoneura du Westphalien supérieur. Compte rendu de l'Académie des Sciences, Paris 183: 13491350.Google Scholar
Bertrand, P., 1937. Tableux des flores successives du Westphalien supérieur et du Stéphanien. Compte rendu Deuxième Congrès pour l'Avancement des Études de Stratigraphie Carbonifère (Heerlen, 1935) 1: 6779.Google Scholar
Besly, B.M., 1987. Sedimentological evidence for Carboniferous and Early Permian palaeoclimates of Europe. Annales de la Societe Géologique du Nord 106: 131143.Google Scholar
Besly, B.M., 1988. Palaeogeographic implications of late Westphalian to early Permian red-beds, Central England. In: Besly, B. & Kelling, G. (eds): Sedimentation in a synorogenic basin complex, the Upper Carboniferous of northwest Europe. Blackie (London): 200221.Google Scholar
Besly, B.M., 2005. Late Carboniferous red-beds of the UK southern North Sea viewed in a regional context. In: Collinson, J.D., Evans, D.J., Holliday, D.W. & Jones, N.S. (eds): Carboniferous hydrocarbon resources: the southern North Sea and surrounding areas. Occasional Special Publication of the Yorkshire Geological Society 7: 225226.Google Scholar
Besly, B.M., Burley, S.D. & Turner, P., 1993. The late Carboniferous ‘Barren Red bed’ play of the Silver Pit area, Eouthern North Sea. In: Parker, J.R. (ed.): Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference: 727740.Google Scholar
Besly, B.M. & Cleal, C.J., 1997. Upper Carboniferous stratigraphy of the West Midlands (UK) revised in the light of borehole geophysical logs and detrital compositional suites. Geological Journal 32: 85118.3.0.CO;2-O>CrossRefGoogle Scholar
Besly, B.M. & Fielding, C.R., 1989. Palaeosols in Westphalian coal-bearing and red-bed sequences, central and northern England. Palaeogeography, Palaeoclimatology, Palaeoecology 70: 303330.CrossRefGoogle Scholar
Besly, B.M. & Turner, P., 1983. Origin of red beds in a moist tropical climate (Etruria Formation, Upper Carboniferous, UK). In: Wilson, R.C.L. (ed.): Residual deposits. Special Publications of the Geological Society, London 11: 131147.Google Scholar
Béthoux, O. & Jarzembowski, E.A., in press. New basal neopterans from Writhlington (UK, Pennsylvanian). Alavesia.Google Scholar
Binney, E.W., 1871. Observations on the structure of fossil plants found in Carboniferous strata. Part II. Lepidostrobus and some allied cones. Palaeontographical Society (London).Google Scholar
Blake, B.M., Cross, A.T., Eble, C.F., Gillespie, W.H., & Pfefferkorn, H.W., 2002. Selected plant megafossils from the Carboniferous of the Appalachian Region, eastern United States: geographic and stratigraphic distribution. In: Carboniferous and Permian of the world. Proceedings of the XIV International Congress on Carboniferous and Permian stratigraphy, Calgary, Alberta, Canada 08 17-21, 1999. Canadian Society of Petroleum Geologists Memoir 19: 259335.Google Scholar
Bless, M.J.M., Bouckaert, J. & Paproth, E., 1989. The Dinant nappes: a model of tensional listric faulting inverted into compressional folding and thrusting. Bulletin de la Société belge de Gólogie 98: 221230.Google Scholar
Boehner, R.C. & Giles, P.S., 1986. Geological map of the Sydney Basin. Nova Scotia Department of Mines and Energy, Halifax NS (Map 86-1).Google Scholar
Bolton, H., 1912. Insect remains from the Midland and South-Eastern Coal Measures. Quarterly Journal of the Geological Society of London 68: 310323.CrossRefGoogle Scholar
Bolton, H., 1924. On a new form of blattoid from the Coal Measures of the Forest of Dean. Quarterly Journal of the Geological Society of London 80: 1721.CrossRefGoogle Scholar
Bossowski, A., Ihnatowicz, A., Mastalerz, K., Kurowski, L. & Nowak, G.J., 2005. Intra-Sudetic depression. In: Zdanowski, A. & Źakowa, H. (eds): The Carboniferous System in Poland. Prace Panstwowego Instytutu Geologicznego 148: 142147.Google Scholar
Boureau, E., 1964. Traité de Paléobotanique III. Sphenophyta, Noeggerathiophyta. Masson et Cie (Paris): 544 pp.Google Scholar
Braddy, S.J., Poschmann, M. & Tetlie, O.E., 2008. Giant claw reveals the largest ever arthropod. Biology Letters 4: 106109.CrossRefGoogle ScholarPubMed
Brongniart, A., 1822. Sur la classification et la distribution des végétaux fossiles en général, et sur ceux des terrains de sediment supérieur en particulier. Mémoires du Museum d'Histoire Naturelle, Paris 8: 203-240, 297348, pls 12-17.Google Scholar
Brousmiche, C., 1983. Les fougères sphénoptéridiennes du bassin houiller Sarro-Lorrain. Publication Société Géologique du Nord 10: 1480.Google Scholar
Buisine, M., 1961. Contribution a l'étude de la flore du terrain houiller. Les Aléthoptéridées du Nord de la France. Études Géologiques pour l'Atlas Topographie Souterraine 1(4): 1317.Google Scholar
Buła, Z. & Żaba, J., 2005. Pozycja tektoniczna Górnośląskiego Zagłębia Węglowego na tle prekambryjskiego i dolnopaleozoicznego podłoża. In: Jureczka, J., Buła, Z. & Żaba, J. (eds): LXXVI Zjazd Naukowy Polskiego Towarzystwa Geologicznego: 1442.Google Scholar
Burek, C.V. & Cleal, C.J., 2005. The life and work of Emily Dix (1904-1972). In: Bowden, A.J., Burek, C.V. & Wilding, R. (eds): History of palaeobotany: selected essays. Geological Society of London, Special Publication 241: 181196.Google Scholar
Burger, K., 1990. Vulkanogene Glasscherben-Relikte in Kohlentonsteinen des Saar-Lothringer Oberkarbons sowie Herkunft und Menge der Pyroklastika. Geologische Rundschau 79: 659691.CrossRefGoogle Scholar
Burger, K., Bieg, G. & Pfisterer, W., 2005. Klassische und primitive Kaolin-Kohlentonsteine im Ruhroberkarbon. In: Deutsche Stratigraphische Kommission (ed.): Stratigraphie von Deutschland. – Das Oberkarbon (Pennsylvanium) in Deutschland. Courier Forschungsinstitut Senckenberg 254: 169180.Google Scholar
Burger, K. & Billig, M., 1987. Vulkanogene Glasscherbenrelikte im Kohlentonstein 3 des Saar-Lothringer Oberkarbons. Zeitschrift der Deutschen Geologischen Gesellschaft 138: 103119.CrossRefGoogle Scholar
Burger, K., Hess, J.C. & Lippolt, H.J., 1997. Tephrochronologie mit Kaolin-Kohlentonsteinen: Mittel zur Korrelation paralischer und limnischer Ablagerungen des Oberkarbons. Geologisches Jahrbuch, A 147: 339.Google Scholar
Burgess, P.M. & Gayer, R.A., 2000. Late Carboniferous tectonic subsidence in South Wales: implications for Variscan basin evolution and tectonic history in SW Britain. Journal of the Geological Society, London 157: 93104.CrossRefGoogle Scholar
Butterfield, N.J., 2009. Oxygen, animals and oceanic ventilation; an alternative view. Geobiology 7: 17.CrossRefGoogle ScholarPubMed
Butterworth, M.A. & Smith, A.H.V., 1976. Thé age of the British Upper Coal Measures with reference to their miospore content. Review of Palaeobotany and Palynology 22: 281306.CrossRefGoogle Scholar
Calder, J.H., 1993. The evolution of a ground-water–influenced (Westphalian B) peat-forming ecosystem in a piedmont setting: the No. 3 seam, Springhill coal, Cumberland Basin, Nova Scotia. In: Cobb, C.J. & Cecil, C.B. (eds): Modern and ancient coal-forming environments. Special Papers, Geological Society of America 286: 153180.CrossRefGoogle Scholar
Calder, J.H., 1998. The Carboniferous evolution of Nova Scotia. In: Blundell, D. J. & Scott, A.C. (ed.): Lyell: the past is the key to the present. Geological Society of London, Special Publications 143: 261302.Google Scholar
Calder, J.H., Gibling, M.R., Eble, C.F., Scott, A.C. & Macneil, D.J., 1996. The Westphalian D fossil lepidodendrid forest at Table Head, Sydney Basin, Nova Scotia: sedimentology, paleoecology and floral response to changing edaphic conditions. International Journal of Geology 31: 277313.Google Scholar
Calver, M.A., 1968. Distribution of Westphalian marine faunas in northern England and adjoining areas. Proceedings of the Yorkshire Geological Society 37: 172.CrossRefGoogle Scholar
Calver, M.A., 1969. Westphalian of Britain. Compte rendu, Sixiéme Congres International de Stratigraphie et de Géologie du Carbonifére (Sheffield, 1967) 1: 233254.Google Scholar
Cameron, T.D.J., 1993. Carboniferous and Devonian (southern North Sea). In: Knox, R.W.O'B. & Cordey, W.G. (eds): Lithostratigraphic Nomenclature of the UK North Sea 5: 1193.Google Scholar
Carpenter, F.M., 1992. Superclass Hexapoda. In: Treatise on Invertebrate Paleontology, Part R, Arthropoda 4 (3 & 4). Boulder (Geological Society of America) and Lawrence (University of Kansas): 655 pp.Google Scholar
Casshyap, S.M., 1975. Cyclic characteristics of coal-bearing sediments in the Bochumer Formation, Ruhrgebiet, Germany. Sedimentology 22: 237255.CrossRefGoogle Scholar
Castro, M.P., 1997. Huellas de actividad biológica sobre plantas del Estefaniense superior de La Magdalena (León, España). Revista Española de Paleontología 12: 5266.Google Scholar
Chisholm, J.I., 1990. The Upper Band-Better Bed sequence (Lower Coal Measures, Westphalian A) in the central and south Pennine area of England. Geological Magazine 127: 5574.CrossRefGoogle Scholar
Chisholm, J.I., Waters, C.N., Hallsworth, C.R., Turner, N., Strong, G.E. & Jones, G.S., 1996. Provenance of Lower Coal Measures around Bradford, West Yorkshire. Proceedings of the Yorkshire Geological Society 51: 153166.CrossRefGoogle Scholar
Clayton, G., Coquel, R., Doubinger, J., Gueinn, K.J., Loboziak, S., Owens, B. & Streel, M., 1977. Carboniferous miospores of western Europe: illustration and zonation. Mededelingen Rijks Geologische Dienst 29: 171.Google Scholar
Cleal, C.J., 1978. Floral biostratigraphy of the upper Silesian Pennant Measures of South Wales. Geological Journal 13: 165194.CrossRefGoogle Scholar
Cleal, C.J., 1984a. The Westphalian D floral biostratigraphy of Saarland (Fed. Rep. Germany) and a comparison with that of South Wales. Geological Journal 19: 327351.CrossRefGoogle Scholar
Cleal, C.J., 1984b. The recognition of the base of the Westphalian D Stage in Britain. Geological Magazine 121: 125129.CrossRefGoogle Scholar
Cleal, C.J., 1986. Fossil plants of the Severn Coalfield and their biostratigraphical significance. Geological Magazine 123: 553568.CrossRefGoogle Scholar
Cleal, C.J., 1987. Macrofloral biostratigraphy of the Newent Coalfield, Gloucestershire. Geological Journal 22: 207217.CrossRefGoogle Scholar
Cleal, C.J., 1991a. The age of the base of the Forest of Dean Coal Measures: fact and fancy. Proceedings of the Geologists' Association 102: 261264.CrossRefGoogle Scholar
Cleal, C.J., 1991b. Plant fossils in geological investigation: the Palaeozoic. Ellis Horwood (Chichester): 233 pp.Google Scholar
Cleal, C.J., 1997. The palaeobotany of the upper Westphalian and Stephanian of southern Britain and its geological significance. Review of Palaeobotany and Palynology 95: 227253.CrossRefGoogle Scholar
Cleal, C.J., 1999. Plant macrofossil biostratigraphy. In: Jones, T.P. & Rowe, N.P. (eds): Fossil plants and spores: modern techniques. Geological Society, London: 220224.Google Scholar
Cleal, C.J., 2004. IGCP 469 Late Westphalian terrestrial biotas and environments of the Variscan Foreland and adjacent intramontane basins. Geologica Balcanica 34: 310.CrossRefGoogle Scholar
Cleal, C.J., 2005. The Westphalian macrofloral record from the cratonic central Pennines Basin, UK. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 156: 387410.CrossRefGoogle Scholar
Cleal, C.J., 2007. The Westphalian-Stephanian macrofloral record from the South Wales Coalfield. Geological Magazine 144: 465486.CrossRefGoogle Scholar
Cleal, C.J., 2008a. IGCP 469 Late Variscan terrestrial biotas and palaeoenvironments. Studia Geologica Polonica 129: 78.Google Scholar
Cleal, C.J., 2008b. Macrofloral biostratigraphy of the Ottweiler Group in Saar-Lorraine and its consequences for Stephanian palynostratigraphy and geochronology. Studia Geologica Polonica 129: 923.Google Scholar
Cleal, C.J., 2008c. Plant biostratigraphy and biodiversity-changes in the Westphalian-Stephanian of the southern Pennines Basin, UK. Studia Geologica Polonica 129: 2441.Google Scholar
Cleal, C.J., 2008d. Palaeofloristics of Middle Pennsylvanian lyginopteridaleans in Variscan Euramerica. Palaeogeography, Palaeoclimatology, Palaeoecology 261: 114.CrossRefGoogle Scholar
Cleal, C.J., 2008e. Palaeofloristics of Middle Pennsylvanian medullosalens in Variscan Euramerica. Palaeogeography, Palaeoecology, Palaeoclimatology 268: 164180.CrossRefGoogle Scholar
Cleal, C.J., Dimitrova, T.Kh. & Zodrow, E.L., 2003. Macrofloral and palynological criteria for recognising the Westphalian-Stephanian boundary. Newsletters on Stratigraphy 39: 181208.CrossRefGoogle Scholar
Cleal, C.J., James, R.M. & Zodrow, E.L., 1999. Variation in stomatal density in the Late Carboniferous gymnosperm frond Neuropteris ovata . Palaios 14: 180185.CrossRefGoogle Scholar
Cleal, C.J. & Shute, C.H., 1995. A synopsis of neuropteroid foliage from the Carboniferous and Lower Permian of Europe. Bulletin of the British Museum (Natural History), Geology Series 51: 152.Google Scholar
Cleal, C.J. & Shute, C.H., 2003. Systematics of the Late Carboniferous medullosalean pteridosperm Laveineopteris and its associated Cyclopteris leaves. Palaeontology 46: 353411.CrossRefGoogle Scholar
Cleal, C.J., Tenchov, Y.G., Dimitrova, T.Kh., Thomas, B.A. & Zodrow, E.L., 2007. Late Westphalian-Early Stephanian vegetational changes across the Variscan Foreland. In: Wong, Th. E (ed.): Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Utrecht, the Netherlands, 10-16 08 2003. Royal Netherlands Academy of Arts and Sciences (Amsterdam): 367377.Google Scholar
Cleal, C.J., Tenchov, Y. & Zodrow, E.L., 2004. Review of the late Westphalian early Stephanian macrofloras of the Dobrudzha Coalfield, Bulgaria. Geologica Balcanica 34: 1120.CrossRefGoogle Scholar
Cleal, C.J. & Thomas, B.A., 1992. Lower Westphalian D fossil plants from the Nolton-Newgale Coalfield, Dyfed, Great Britain. Geobios 25: 315322.CrossRefGoogle Scholar
Cleal, C.J. & Thomas, B.A., 1994. Plant fossils of the British Coal Measures. Palaeontological Association (London): 222 pp.Google Scholar
Cleal, C.J. & Thomas, B.A., 1995. British Upper Carboniferous stratigraphy. Geological Conservation Review Series, No. 11. London (Chapman & Hall): 295 pp.Google Scholar
Cleal, C.J. & Thomas, B.A., 1999. Tectonics, tropical forest destruction and global warming in the Late Palaeozoic. Acta Palaeobotanica, Supplement 2: 1719.Google Scholar
Cleal, C.J. & Thomas, B.A., 2005. Palaeozoic tropical rainforests and their effect on global climates: is the past the key to the present? Geobiology 3: 1331.CrossRefGoogle Scholar
Cleal, C.J., Zodrow, E.L. & Šimůnek, Z., 2007. Leaf cuticles from the Pennsylvanian-aged medullosalean Odontopteris cantabrica Wagner. Acta Palaeobotanica 47: 327337.Google Scholar
Cleal, C.J., Zodrow, E.L. & Mastalerz, M., in press. An association of Alethopteris foliage, Trigonocarpus ovules and Bernaultia-like pollen organs from the Middle Pennsylvanian of Nova Scotia, Canada. Palaeontographica, Abteilung B.Google Scholar
Cole, J.M., Whitaker, M., Kirk, M. & Crittenden, S., 2005. A sequence stratigraphical scheme for the Late Carboniferous, southern North Sea, Anglo-Dutch sector. In: Collinson, J.D., Evans, D.J., Holliday, D.W. & Jones, N.S. (eds): Carboniferous hydrocarbon resources: the southern North Sea and surrounding areas. Occasional Special Publication of the Yorkshire Geological Society 7: 75104.Google Scholar
Collinson, J.D., Jones, C.M., Blackbourn, G.A., Besly, B.M., Archard, G.M. & MacMahon, A.H., 1993. Carboniferous depositional systems of the Southern North Sea. In: Parker, J.R. (ed.): Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference: 677687.Google Scholar
Constanza, S.H., 1984. Morphology and systematics of Cordaites of Pennsylvanian coal swamps of Euramerica. PhD thesis, University of Illinois.Google Scholar
Cope, J.C.W., Guion, P.D., Sevastopulo, G.D. & Swan, A.R.H., 1992. Carboniferous. In: A palaeogeographical atlas. Geological Society, London: 6786.Google Scholar
Corsin, P., 1932. Guide paléontologique dans le Terrain Houiller du Nord de la France. Lille. Université de Lille, Travaux et Mémoires 5: 144.Google Scholar
Corsin, P., 1951. Bassin houiller de la Sarre et de la Lorraine, I. Flore Fossile me Fascicule Pécoptéridiées. Études des Gite Minéraux de la France: 370 pp.Google Scholar
Corsin, P., 1955. Positions systématique des Pécopteris. Comptes rendus de l'Académie des Sciences, Paris 240: 661663.Google Scholar
Cowan, G., 1989. Diagenesis of Upper Carboniferous sandstones: southern North Sea Basin. In: Whateley, M.K.G. & Pickering, K.T. (eds): Deltas: Sites and Traps for Fossil Fuels. Geological Society of London, Special Publication 41: 5773.Google Scholar
Crookall, R., 1969. Fossil plants of the Carboniferous rocks of Great Britain (Second Section). Part 5. Memoirs of the Geological Survey of Great Britain, Palaeontology 4: 573792.Google Scholar
Crookall, R., 1970. Fossil plants of the Carboniferous rocks of Great Britain (Second Section). Part 6. Memoirs of the Geological Survey of Great Britain, Palaeontology 4: 793840.Google Scholar
Daňková-Pokorná, S., 1952. Two new Sphenophylla from the lower grey beds of the coal basin of central Bohemia. Sborník Státního ústavu geologického 18: 297307.Google Scholar
David, F., 1990. Sedimentologie und Beckenanalyse im Westfal C und D des nordwestdeutschen Beckens. DGMK-Bericht 384-3.Google Scholar
Davies, D., 1929. Correlation and palæontology of the Coal Measures in east Glamorganshire. Philosophical Transactions of the Royal Society of London, Series B 217: 91153.Google Scholar
Davies, S.J. & Gibling, M.R., 2003. Architecture of coastal and alluvial deposits in an extensional basin: the Carboniferous Joggins Formation of eastern Canada. Sedimentology 50: 125.CrossRefGoogle Scholar
Dembowski, Z., 1972. Ogólne dane o Górnośląskim Zagłębiu Weglowym. Prace Instytutu Geologicznego (Warszawa) 61: 922.Google Scholar
Dettmann, M. E., 1963. Upper Mesozoic microfloras from south-eastern Australia. Proceedings of the Royal Society of Victoria 77: 1148.Google Scholar
De Vos, W., 1997. Influence of the granitic batholith of Flanders on Acadian and later deformation (Brabant Massif, Belgium). Aardkundige Mededelingen 8: 4952.Google Scholar
Diesel, C.F.K., 1992. Coal-bearing depositional systems. Berlin Heidelberg (Springer-Verlag): 721 pp.CrossRefGoogle Scholar
DiMichele, W.A. & Aronson, R.B., 1992. The Pennsylvanian-Permian vegetational transition: a terrestrial analogue of the onshore-offshore hypothesis. Evolution 46: 807824.CrossRefGoogle ScholarPubMed
DiMichele, W.A., Montañez, I.P., Poulsen, C.J. & Tabor, N.J., 2009. Climate and vegetational regime shifts in the late Paleozoic ice age earth. Geobiology 7: 200226.CrossRefGoogle ScholarPubMed
DiMichele, W.A., Pfefferkorn, H.W. & Gastaldo, R.A., 2001. Response of Late Carboniferous and Early Permian plant communities to climate change. Annual Review of Earth and Planetary Sciences 29: 461487.CrossRefGoogle Scholar
DiMichele, W.A., Pfefferkorn, H.W. & Phillips, T.L., 1996. Persistence of Late Carboniferous tropical vegetation during glacially driven climatic and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology 125: 105128.CrossRefGoogle Scholar
DiMichele, W.A. & Phillips, T.L., 1988. Paleoecology of the Middle Pennsylvanian-age Herrin Coal Swamp (Illinois) near a contemporaneous river system, the Walshville paleochannel. Review of Palaeobotany and Palynology 56: 151176.CrossRefGoogle Scholar
DiMichele, W.A. & Phillips, T.L., 1994. Paleobotanical and paleoecological constraints on models of peat formation in the Late Carboniferous of Euramerica. Palaeogeography, Palaeoclimatology, Palaeoecology 106: 3990.CrossRefGoogle Scholar
DiMichele, W.A. & Phillips, T.L., 1985. Arborescent lycopod reproduction and paleoecology in a coal-swamp environment of late Middle Pennsylvanian age (Herrin Coal, Illinois, U.S.A.). Review of Palaeobotany and Palynology 44: 126.CrossRefGoogle Scholar
DiMichele, W.A. & Phillips, T.L., 1994. Paleobotanical and paleoecological constraints on models of peat formation in the Late Carboniferous of Euramerica. Palaeogeography, Palaeoclimatology, Palaeoecology 106: 3990.CrossRefGoogle Scholar
DiMichele, W.A. & Phillips, T.L., 1995. The response of hierarchially structured ecosystems to long-term climatic change: a case study using tropical peat swamps of Pennsylvanian age. In: Stanley, S.M., Knoll, A.J. & Kennett, J.P. (eds): Effects of past global change on life. Studies in Geophysics, National Academy of Sciences (Washington DC): 134155.Google Scholar
DiMichele, W.A. & Phillips, T.L., 1996a. Climate change, plant extinction and vegetational recovery during Middle-Late Pennsylvanian transition: the case of tropical peat-forming environments in North America. In: Hart, M.B. (ed.): Biotic recovery from mass extinction events. Geological Society (London): 201221.Google Scholar
DiMichele, W.A. & Phillips, T.L., 1996b. Clades, ecological amplitudes, and ecomorphs: phylogenetic effects and persistence of primitive plant communities in the Pennsylvanian-age tropical wetlands. Palaeogeography, Palaeoclimatology, Palaeoecology 127: 83105.CrossRefGoogle Scholar
DiMichele, W.A. & Phillips, T.L., 2002. The ecology of Paleozoic ferns. Review of Palaeobotany and Palynology 119: 143159.CrossRefGoogle Scholar
DiMichele, W.A., Phillips, T.L. & McBrinn, G.E., 1991. Quantitative analysis and paleoecology of the Secor Coal and roof-shale floras (Middle Pennsylvanian, Oklahoma). Palaios 6: 390409.CrossRefGoogle Scholar
DiMichele, W.A., Phillips, T.L. & Peppers, R.A., 1985. The influence of climate and depositional environment on the distribution and evolution of Pennsylvanian coal swamp plants. In: Tiffney, B. (ed.): Geological Factors in the Evolution of Plants. Yale University Press (New Haven CT): 223256.Google Scholar
DiMichele, W.A., Phillips, T.L. & Pfefferkorn, H.W., 2006. Paleoecology of Late Paleozoic pteridosperms from tropical Euramerica. Journal of the Torrey Botanical Society 133: 83118.CrossRefGoogle Scholar
Dimitrova, T.Kh., 1997. Palinolozhki ansambli ot Makedonskata svita, Dobrudzhanski vaglishten baseyn. Review of the Bulgarian Geological Society 58: 2530.Google Scholar
Dimitrova, T.Kh. & Cleal, C.J., 2007. Palynological evidence for late Westphalian - early Stephanian vegetation change in the Dobrudzha Coalfield, NE Bulgaria. Geological Magazine 144: 513524.CrossRefGoogle Scholar
Dimitrova, T.Kh., Cleal, C.J. & Thomas, B.A., 2005. Palynology of late Westphalian - early Stephanian coal-bearing deposits in the eastern South Wales Coalfield. Geological Magazine 142: 809821.CrossRefGoogle Scholar
Dimitrova, T.Kh., Zodrow, E.L., Cleal, C.J. & Thomas, B.A., in press. Palynological evidence for Pennsylvanian (Late Carboniferous) vegetation change in the Sydney Coalfield, eastern Canada. Geological Journal.Google Scholar
Dix, E., 1931. The flora of the Upper Portion of the Coal Measures of North Staffordshire. Quarterly Journal of the Geological Society of London 77: 160179.CrossRefGoogle Scholar
Dix, E., 1934. The sequence of floras in the Upper Carboniferous, with special reference to South Wales. Transactions of the Royal Society of Edinburgh 57: 789838.CrossRefGoogle Scholar
Dix, E., 1937. The succession of fossil plants in the South Wales Coalfield with special reference to the existence of the Stephanian. Compte rendu, 2e Congrès Stratigraphie du Carbonifère (Heerlen, 1935) 1: 159184.Google Scholar
Doktor, M. & Gradziński, R., 2000. Sedimentary environments and depositional systems of coal bearing succession of the Upper Silesian Coal Basin. Proceedings of XXIII Symposium Geology of Coal-Bearing Strata of Poland, 2933. (In Polish, with English summary).Google Scholar
Donsimoni, M., 1981. Le bassin houiller lorrain: synthése géologique. Mémoires Bureau de Recherches Géologique et Minières 117: 199.Google Scholar
Döring, H., Hoth, K. & Kahlert, E., 1988. Gegenwärtiger Stand der litho- und sporostratigraphischen Gliederung des Zwickauer Siles. Freiberger Forschungshefte C 419: 1829.Google Scholar
Drägert, K., 1964. Pflanzensoziologische Untersuchungen in den Mittleren Essener Schichten des nördlichen Ruhrgebietes. Forschungsberichte des Landes Nordrhein-Westfalens 1363: 1295.Google Scholar
Dreesen, R., Bossiroy, D., Dusar, M., Flores, R.M. & Verkaeren, P., 1995. Overview of the influence of syn-sedimentary tectonics and palaeo-fluvial systems on coal seam and sand body characteristics in the Westphalian C strata, Campine Basin, Belgium. In: Whateley, M.K.G. & Spears, D.A. (eds): European coal geology. Geological Society Special Publication 82: 215232.Google Scholar
Drozdzewski, G., 1993. The Ruhr coal basin (Germany): structural evolution of an autochthonous foreland basin. International Journal of Coal Geology 23: 231250.CrossRefGoogle Scholar
Drozdzewski, G., 2005. Zur sedimentären Entwicklung des Subvariscikums im Namurium und Westfalium Nordwestdeutschlands. In: Deutsche Stratigraphische Kommission (ed.): Stratigraphie von Deutschland. – Das Oberkarbon (Pennsylvanium) in Deutschland. Courier Forschungsinstitut Senckenberg 254: 271325.Google Scholar
Dunham, K.C., Poole, E.G., 1974. The Oxfordshire Coalfield. Journal of the Geological Society 130: 387391.CrossRefGoogle Scholar
Dunlop, J.A., 1994a. The Upper Carboniferous amblypygid from the Writhlington Geological Nature Reserve. Proceedings of the Geologists' Association 105: 245250.CrossRefGoogle Scholar
Dunlop, J.A., 1994b. The palaeobiology of the Writhlington trigonotarbid arachnid. Proceedings of the Geologists' Association 105: 287296.CrossRefGoogle Scholar
Durante, M.V., 1995. Reconstruction of Late Paleozoic climatic changes in Angaraland according to phytogeographic data. Stratigraphy and Geological Correlations 3: 123133.Google Scholar
Durante, M.V., 2000. Global cooling in the middle Carboniferous. Newsletter on Carboniferous Stratigraphy 18: 3132.Google Scholar
Durden, C., 1984a. North American provincial insect ages for the continental last half of the Carboniferous and first half of the Permian. Compte Rendu. Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère 2: 606612.Google Scholar
Durden, C., 1984b. Carboniferous and Permian entomology of western North America. Compte Rendu. Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère 2: 8189.Google Scholar
Durden, C., 2005. Digest Number 108, .Google Scholar
Eagar, R.M.C., 2005. Non-marine and limnic bivalves. In: Deutsche Strati graphische Kommission (ed.): Stratigraphie von Deutschland. – Das Oberkarbon (Pennsylvanium) in Deutschland. Courier Forschungsinstitut Senckenberg 254: 5586.Google Scholar
Eagar, R.M.C. & Belt, E.S., 2003. Succession, palaeoecology, evolution, and speciation of Pennsylvanian non-marine bivalves, Northern Appalchian Basin, USA. Geological Journal 38: 109143.CrossRefGoogle Scholar
Easterday, C.R., 2005. Evidence for relative stability in terrestrial lowland faunas despite severe climatic change at the Middle-Upper Pennsylvanian (Carboniferous) transition of paleotropical Euramerica: quantitative comparison of Cemeterey Hill (Ohio) with fourteen penecontemporaneous Permo-Carboniferous Konservat-Lagerstaetten. PaleoBios 25 (Supplement 2): 40.Google Scholar
Eble, C.F., 2004. A Carboniferous icehouse: an international comparison of Mid-Carboniferous tropical floras and their response to global climatic change. Energeia 15: 24.Google Scholar
Eble, C.F. & Grady, W.C., 1993. Palynologic and petrographic characteristics of two Middle Pennsylvanian coal beds and a probable modern analogue. In: Cobb, C.J. & Cecil, C.B. (eds): Modern and ancient coal-forming environments. Special Papers, Geological Society of America 286: 119138.CrossRefGoogle Scholar
Eble, C.F., Greb, S.F. & Williams, D.A., 2001. The geology and palynology of Lower and Middle Pennsylvanian strata in the Western Kentucky Coal Field. International Journal of Coal Geology 47: 189206.CrossRefGoogle Scholar
Edwards, D., 1998. Climate signals in Palaeozoic land plants. Philosophical Transactions of the Royal Society of London, Series B 353: 141157.CrossRefGoogle Scholar
Evans, J.A., Chisholm, J.I. & Leng, M.J., 2001. How U-Pb detrital monazite ages contribute to the interpretation of the Pennine Basin infill. Journal of the Geological Society, London 158: 741744.CrossRefGoogle Scholar
Fabian, H.J., 1971. Das Oberkarbon im Untergrund von Nordwestdeutschland und dem angrenzenden Nordseebereich. Fortschritte in der Geologie von Rheinland und Westfalen 19: 87100.Google Scholar
Falcon-Lang, H.J., 2003. Late Carboniferous tropical dryland vegetation in an alluvial-plain setting. Palaios 18: 197211.2.0.CO;2>CrossRefGoogle Scholar
Falcon-Lang, H.J. & Bashforth, A.R., 2004. Pennsylvanian uplands were forested by giant cordaitalean trees. Geology 32: 417420.CrossRefGoogle Scholar
Falke, H. & Kneuper, G., 1972. Das Karbon in limnischer Entwicklung. Compte rendu 7e Congrès International de Stratigraphie et de Géologie du Carbonifère (Krefeld, 1971) 1: 4967.Google Scholar
Fielding, C.R., 1984a. A coal depositional model for the Durham Coal Measures of NE England. Journal of the Geological Society 141: 919931.CrossRefGoogle Scholar
Fielding, C.R., 1984b. Upper delta plain lacustrine and fluviolacustrine facies from the Westphalian of the Durham coalfield, NE England. Sedimentology 31: 547567.CrossRefGoogle Scholar
Fielding, C.R., 1986. Fluvial channel and overbank deposits from the Westphalian of the Durham coalfield, NE England. Sedimentology 33: 119140.CrossRefGoogle Scholar
Fielding, C.R., 1987. Lower delta plain interdistributary deposits – an example from the Westphalian of the Lancashire Coalfield, northwest England. Geological Journal 22: 151162.CrossRefGoogle Scholar
Fielding, C.R., Frank, T.D., Birgenheier, L.P., Rygel, M.C., Jones, A.T. & Roberts, J., 2008. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: a record of alternating glacial and nonglacial climate regime. Journal of the Geological Society, London 165: 129140.CrossRefGoogle Scholar
Fissunenko, O.P. & Laveine, J.-P., 1984. Comparaison entre la distribution des principales espèces-guides végétales du Carbonifère moyen dans le bassin du Donetz (URSS) et les bassins du Nord-Pas-de-Calais et de Lorraine (France). Compte rendu 9e Congrès de Stratigraphie et de Géologie du Carbonifère (Washington and Urbana, 1979) 1: 95100.Google Scholar
Florin, R., 19381945. Die Koniferen des Oberkarbons und des unteren Perms. Palaeontographica, Abteilung B 85: 1729.Google Scholar
Foster, D., Holliday, D.W., Jones, C.M., Owens, B. & Welsh, A., 1989. The concealed Upper Palaeozoic rocks of Berkshire and south Oxfordshire. Proceedings of the Geologists' Association 100: 395407.CrossRefGoogle Scholar
Foster, S.A., 1986. On the adaptive value of large seeds for tropical moist forest trees: a review and synthesis. Botanical Review 52: 260299.CrossRefGoogle Scholar
Frakes, L.A., Francis, J.E. & Styktus, J.I., 1992. Climate modes of the Phanerozoic. Cambridge University Press (Cambridge): 274 pp.CrossRefGoogle Scholar
Franke, W., 2000. The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke, W., Haak, V., Oncken, O. and Tanner, D. (eds): Orogenic Processes: quantification and modelling in the Variscan Belt. Special Publications, Geological Society, London 179: 3561.Google Scholar
Franke, W., 2006. The Variscan orogen in Central Europe: construction and collapse. In: Gee, D.G. & Stephenson, R.A. (eds): European lithosphere dynamics. Geological Society, London, Memoirs 32: 333343.Google Scholar
Franks, D., 2007. Fossil-plant treasure trove open for hunters. Earth Heritage 29: 8.Google Scholar
Fraser, A.J. & Gawthorpe, R.L., 1990. Tectono-stratigraphic development and hydrocarbon habitat of the Carboniferous in northern England. In: Hardman, R.F.P. & Brooks, J. (ed.): Tectonic Events rsponsible for Britain's Oil and Gas Reserves. Geological Society of London, Special Publication No. 55: 4986.Google Scholar
Fraser, H.E. & Cleal, C.J., 2007. The contributions of British women to Carboniferous palaeobotany during the first half of the 20th century. In: Burek, C.V. & Higgs, B. (eds): The role of women in the history of geology. Geological Society of London, Special Publication 281: 5182.Google Scholar
Fritz, A. & Boersma, M., 1983a. Fundberichte über Pflanzenfossilien aus Kärnten Beiträge 3 und 4. Carinthia II, Klagenfurt 173/93: 1941.Google Scholar
Fritz, A. & Boersma, M., 1983b. Fundberichte über Pflanzenfossilien aus Kärneten 1983 Beitrag 5. Carinthia II, Klagenfurt 173/93: 315337.Google Scholar
Fulton, I.M., 1987. Genesis of the Warwickshire Thick Coal: a group of long-residence histosols. In: Scott, A.C. (ed.): Coal and coal-bearing strata: recent advances. Geological Society, London, Special Publication 32: 201218.Google Scholar
Gaitzsch, B., Rößler, R., Schneider, J.W. & Schretzenmayer, S., 1998. Neue Ergebnisse zur Verbreitung potentieller Muttergesteine im Karbon der variscischen Vorsenke in Nordostdeutschland. Geologisches Jahrbuch A 149: 2558.Google Scholar
Gastaldo, R.A., 1977. A Middle Pennsylvanian nodule flora from Carterville, Illinois. In: Romans, R.D. (ed.): Geobotany. Plenum Press (New York): 133155.CrossRefGoogle Scholar
Gastaldo, R.A., 1981. Taxonomic considerations for Carboniferous coalified compression equisetalean strobili. American Journal of Botany 68: 13191324.CrossRefGoogle Scholar
Gastaldo, R.A., 1992. Regenerative growth in fossil horsetails following burial by alluvium. Historical Biology 6: 203219.CrossRefGoogle Scholar
Gastaldo, R.A., DiMichele, W.A. & Pfefferkorn, H.W., 1996. Out of the Icehouse into the Greenhouse: a Late Paleozoic analog for modern global vegetational change. GSA Today 6: 17.Google Scholar
Gayer, R.A., Cole, J.E., Greiling, R.O., Hecht, C. & Jones, J.A., 1993. Comparative evolution of coal-bearing foreland basins along the Variscan northern margin in Europe. In: Gayer, R.A., Greiling, R.O. & Vogel, A.K. (eds): Rhenohercynian and Subvariscan fold belts. Vieweg & Sons (Braunschweig): 4782.Google Scholar
Gayer, R.A. & Jones, J.A., 1989. The Variscan Foreland in South Wales. Proceedings of the Ussher Society 7: 177179.Google Scholar
Gayer, R.A. & Pešek, J., 1992. Cannibalisation of Coal Measures in the South Wales Coalfield – significance for foreland basin evolution. Proceedings of the Ussher Society 8: 4449.Google Scholar
Gayer, R.A. & Stead, J.T.G., 1971. The Forest of Dean coal and iron-ore fields. In: Bassett, D.A. & Bassett, M.G. (eds): Geological excursions in South Wales & the Forest of Dean. Geologists' Association South Wales Group (Cardiff): 2136.Google Scholar
Geinitz, H.G., 1855. Die Versteinerungen der Steinkohlenformation in Sachsen. W. Engelmann (Leipzig): 61 pp.CrossRefGoogle Scholar
Germar, E.F., 1844. Die Vesteinerungen des Steinkohlengebirges von Wettin und Löbejün im Saalkreis, Halle. Königlich Preussische Geolgische Landesanstalt (Berlin): 116 pp.CrossRefGoogle Scholar
Germer, R., 1971. Leitfossilien in der Schichtenfolge des Saarkarbons. Beihefte zur Geologischen Landesaufnahme des Saarlandes 3: 1124.Google Scholar
Germer, R., Kneuper, G.K. & Wagner, R.H., 1968. Zur Westfal/Stefan-Grenze und zur Frage der asturischen Faltungsphase im Saarbrücker Hauptsattel. Geologica et Palaeontologica 2: 5971.Google Scholar
Gibling, M.R. & Bird, D.J., 1994. Late Carboniferous cyclothems and alluvial paleovalleys in the Sydney Basin, Nova Scotia. Bulletin of the Geological Society of America 106: 105117.2.3.CO;2>CrossRefGoogle Scholar
Gibling, M.R., Saunders, K.I., Tibert, N.E. & White, J.A., 2004. Sequence sets, high accommodation events, and the Coal Window in the Carboniferous Sydney Coalfield, Atlantic Canada. In: Pashin, J. C. & Gastaldo, R. A. (eds): Sequence stratigraphy, paleoclimate, and tectonics of coal-bearing strata. AAPG Studies in Geology 51: 169197.Google Scholar
Glennies, K.W., 2005. Regional tectonics in relation to Permo-Carboniferous hydrocarbon potential, Southern North Sea Basin. In: Collinson, J.D., Evans, D.J., Holliday, D.W. & Jones, N.S. (eds): Carboniferous hydrocarbon resources: the southern North Sea and surrounding areas. Occasional Special Publication of the Yorkshire Geological Society 7: 112.Google Scholar
Glover, B.W., Powell, J.H. & Waters, C.N., 1993. Etruria Formation (Westphalian C) palaeoenvironments and volcanicity on the southern margins of the Pennine Basin, south Staffordshire, England. Journal of the Geological Society 150: 737750.CrossRefGoogle Scholar
González, C.R., 1990. Development of the Late Paleozoic glaciations of the South American Gondwana in western Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 79: 275287.CrossRefGoogle Scholar
Good, C.W., 1978. Taxonomic characteristics of sphenophyllalean cones. American Journal of Botany 65: 8697.CrossRefGoogle Scholar
Gorder, P.F., 2001. Largest fossil cockroach found: site preserves incredible detail. Ohio State University Research (http://researchnews.osu.edu/archive/bigroach.htm).Google Scholar
Gradstein, F., Ogg, J. & Smith, A., 2004. A geological time scale 2004. Cambridge University Press (Cambridge): 589 pp.CrossRefGoogle Scholar
Gradziński, R., 1982. Explanatory notes to the lithotectonic molasse profile of the Upper Silesian Basin (Upper Carboniferous – Lower Permian). Veröffentlichungen des Zentralinstituts für Physik der Erde AdW DDR, Potsdam (1982): 225235.Google Scholar
Grauvogel-Stamm, L., Gall, J.-C., Laveine, J.-P., Brousmiche, C. & Duringer, P., 1992. Carboniferous of Sarre-Lorraine Coal Basin. 4th International Organization of Palaeobotany Conference, Pre-Congress Excursion. O.F.P. Informations, Numero Special 16A: 112.Google Scholar
Greb, S.F., Andrews, W.M., Eble, C.F., DiMichele, W., Cecil, C.B. & Hower, J.C., 2003. Desmoinesian coal beds of the Eastern Interior and surrounding basins: the largest tropical peat mires in Earth history. In: Chan, M.A. & Archer, A.W. (eds): Extreme depositional environments: mega end members in geologic time. Geological Society of America, Special Paper 370: 127150.Google Scholar
Grebe, H., 1972. Die Verbreitung der Mikrosporen im Ruhrkarbon von den Bochumer Schichten bis zu den Dorstener Schichten (Westfal A-C). Palaeontographica, Abteilung B 140: 27115.Google Scholar
Guion, P.D. & Fielding, C.R., 1988. Westphalian A and B sedimentation in the Pennines Basin, UK. In: Besly, B. & Kelling, G. (eds): Sedimentation in a synorogenic basin complex, the Upper Carboniferous of northwest Europe. Blackie (London): 153177.Google Scholar
Guion, P.D., Fulton, I.M. & Jones, N.S., 1995. Sedimentary facies of the coal-bearing Westphalian A and B north of the Wales-Brabant High. Special Publication of the Geological Society of London 82: 4578.CrossRefGoogle Scholar
Guthörl, P., 1952. Die Leit-Fossilien und Stratigraphie des saar-lothringischen Karbons. Compte rendu 3e Congrès International de Stratigraphie et de Géologie du Carbonifère (Heerlen, 1951) 1: 233242.Google Scholar
Hallsworth, C.R. & Chisholm, J.I., 2000. Stratigraphic evolution of provenance characteristics in Westphalian sandstones of the Yorkshire Coalfield. Proceedings of the Yorkshire Geological Society 53: 4372.CrossRefGoogle Scholar
Hallsworth, C.R., Morton, A.C., Claoué-Long, J.C. & Fanning, C.M., 2000. Carboniferous sand provenance in the Pennine basin, UK: constrains from heavy minerals and detrital zircon age data. Sedimentary Geology 137: 147185.CrossRefGoogle Scholar
Hampson, G.J., 1998. Evidence for relative sea-level falls during deposition of the Upper Carboniferous Millstone Grit, South Wales. Geological Journal 33: 243266.3.0.CO;2-4>CrossRefGoogle Scholar
Hampson, G.J., Stollhofen, H. & Flint, S.S., 1999. A sequence stratigraphic model for the Lower Coal Measures (Upper Carboniferous) of the Ruhr District, northwest Germany. Sedimentology 46: 11991232.CrossRefGoogle Scholar
Handlirsch, A., 19061908. Die fossilen Insekten und die Phylogenie der Rezenten Formen. Engelmann (Leipzig): 1430 pp.Google Scholar
Harms, V.L. & Leisman, G.A., 1961. The anatomy and morphology of certain cordaites leaves. Journal of Paleontology 35: 10411064.Google Scholar
Hartkopf-Fröder, C., 2005. Palynostratigraphie des Oberkarbons. In: Deutsche Stratigraphische Kommission (ed.): Stratigraphie von Deutschland. – Das Oberkarbon (Pennsylvanium) in Deutschland. Courier Forschungsinstitut Senckenberg 254: 133160.Google Scholar
Hartley, A.J., 1993a. A depositional model for the mid-Westphalian A to late Westphalian B Coal Measures of South Wales. Journal of the Geological Society 150: 11211136.CrossRefGoogle Scholar
Hartley, A.J., 1993b. Silesian sedimentation in south-west Britain: sedimentary responses to the developing Variscan Orogeny. In: Gayer, R.A., Greiling, R.O. & Vogel, A.K. (eds): Rhenohercynian and Subvariscan fold belts. Vieweg & Sons (Braunschweig): 157196.Google Scholar
Hartley, A.J. & Warr, L.N., 1990. Upper Carboniferous foreland basin evolution in SW Britain. Proceedings of the Ussher Society 7: 212216.Google Scholar
Haszeldine, R.S. & Anderton, R., 1980. A braidplain facies model for the Westphalian B Coal Measures of north-east England. Nature 284: 5153.CrossRefGoogle Scholar
Haubold, H. & Sarjeant, W.A.S., 1973. Tetrapodenfährten aus den Keele und Enville Groups (Permokarbon, Stefan und Autun) von Shropshire und South Staffordshire, Grossbritannien. Zeitschrift für Geologische Wissenschaften, Berlin 1: 895933.Google Scholar
Havlena, V., 1964. Geologie uhelných ložisek 2. Nakladateství Československé akademie věd (Praha): 437 pp.Google Scholar
Havlena, V., 1965. Geologie uhelných ložisek 3. Nakladateství Československé akademie věd (Praha): 382 pp.Google Scholar
Havlena, V. & Pešek, J., 1980. Stratigrafie, paleogeografie a základní strukturní členění limnického permokarbonu Cech a Moravy. Sborník Príroda 34: 1144.Google Scholar
Heckel, P.H., 1991. Lost Branch Formation and revision of upper Desmoinesian stratigraphy along Midcontinent outcrop belt. Kansas Geological Survey, Geology Series 4: 167.Google Scholar
Heckel, P.H., 2002. Overview of Pennsylvanian cyclothems in midcontinent North America and brief summary of those elsewhere in the world. In: Hill, L.V., Henderson, C.H. & Bamber, E.W. (eds): Carboniferous and Permian of the world, Proceedings of the XIV ICCP. Canadian Society of Petroleum Geologists Memoir 19: 7998.Google Scholar
Heckel, P.H. & Clayton, G., 2006. The Carboniferous System. Use of the new official names for subsystems, series and stages. Geologica Acta 3: 403407.Google Scholar
Hess, J.C., Backfisch, S. & Lippolt, H.J., 1983. Konkordantes Sanidin- und diskor dante Biotit-alter eines Karbontuffs der Baden-Badener Senke, Nordschwarzwald. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte: 277292.Google Scholar
Hess, J.C., Lippolt, H.J., Holub, V.M. & Pešek, J., 1985. Isotopic ages of two Westphalian C tuffs – a contribution to the Upper Carboniferous timescale. Terra Cognita 5: 236237.Google Scholar
Hollmann, G., 1997. Incremental 2D reconstruction of the Variscan foreland thrust belt (eastern Ardenne, Belgium). Aardkundige Mededelingen 8: 111114.Google Scholar
Hollmann, G. & Von Wintereld, C., 1999. Laterale Strukturvariationen eines Vorlandüberschiebungsgürtels. Zeitschrift der Deutschen Geologischen Gesellschaft 150: 431450.CrossRefGoogle Scholar
Holub, V., Jaroš, J., Malý, L., Matínek, K., Pešek, J., Prouza, V., Spudil, J. & Tásler, R., 2001. Geologie a ložiska svrchnopaleozoických limnických pánví České republiky. Český geologický ústav (Praha): 243 pp.Google Scholar
Horton, D.E. & Poulsen, C.J., 2009. Paradox of late Paleozoic glacioeustasy. Geology 37: 715718.CrossRefGoogle Scholar
Hoskins, J.H. & Cross, A.T., 1943. Monograph of the Paleozoic cone genus Bowmanites (Sphenophyllales). American Midland Naturalist 30: 47148.CrossRefGoogle Scholar
Hoth, K., (in press). Die Grobklastit-Horizonte im Zwickauer Oberkarbon. Schriftenreihe Bergbau in Sachsen 15.Google Scholar
Hoth, K. & Wolf, P., 2007. Untersuchungen zum Ressourcenpotential der ostdeutschen Steinkohlenvorkommen. Schriftenreihe für Geowissenschaften 16: 187193.Google Scholar
Iannuzzi, R. & Pfefferkorn, H.W., 2002. A pre-glacial, warm-temperate floral belt in Gondwana (late Visean, Early Carboniferous). Palaios 17: 571590.2.0.CO;2>CrossRefGoogle Scholar
Izart, A., Palain, C., Malartre, F., Fleck, S. & Michels, R., 2005. Paleoenvironments, paleoclimates and sequences of Westphalian deposits of Lorraine coal basin (Upper Carboniferous, NE France). Bulletin de la Société Géologique de France 176: 301315.CrossRefGoogle Scholar
Jachowicz, A., 1972. Charakterystyka mikroflorystyczna i stratygrafia karbonu produktywnego Górnośląskiego Zagłębia Węglowego. Prace Instytutu Geologicznego 61: 185277.Google Scholar
Jachowicz, A. & Dybova-Jachowicz, S., 1983. Application of palynology to geological research in Carboniferous coal basins of Poland. In: Bojkowski, K. & Porzycki, J. (eds): Geological problems of coal basins of Poland. Geological Institute (Warsaw): 165185.Google Scholar
Jarzembowski, E.A., 2001a. Insecta (insects). In: Encyclopaedia of Life Sciences. Wiley (Chichester): 17.Google Scholar
Jarzembowski, E.A., 2001b. Review of early insects and palaeocommunities. In: Deuve, T. (ed.): Origin of the Hexapoda. Annales de la Société entomologique de France, N. S. 37: 1119.Google Scholar
Jarzembowski, E.A., 2003. Palaeoentomology: towards the big picture. In: Krzeminska, E. & Krzeminski, W. (eds): Proceedings of the 2nd Congress on palaeoentomology, 2001. Acta Zoologica Cracoviensia 46 (Supplement): 2536.Google Scholar
Jarzembowski, E.A., 2004. Atlas of animals from the late Westphalian of Writhlington, United Kingdom. Geologica Balcanica 34: 4750.CrossRefGoogle Scholar
Jarzembowski, E.A., 2005a. Insects. In: Selley, R. C., Cocks, L. R. M., & Plimer, I. R. (eds): Encyclopaedia of geology 2. Elsevier (Oxford): 295300.CrossRefGoogle Scholar
Jarzembowski, E.A., 2005b. Colour and behaviour in Late Carboniferous terrestrial arthropods. Zeitschrift der Deutschen Gessellschaft für Geowissenschaften 156: 381386.CrossRefGoogle Scholar
Jarzembowski, E.A., 2007. IGCP 469 – Late Variscan terrestrial biotas and palaeoenvironments. African Invertebrates 48: 248.Google Scholar
Jarzembowski, E.A., 2008. The oldest insect from Romania: a new Carboniferous blattodean. Studia Geologica Polonica 129: 4350.Google Scholar
Jarzembowski, E.A. & Schneider, J.W., 2007. The stratigraphical potential of blattodean insects from the late Carboniferous of southern Britain. Geological Magazine 144: 449456.CrossRefGoogle Scholar
Jones, D.G., 1958. A note on new Namurian plant localities at the head of the Neath Valley, South Wales. Geological Magazine 95: 7781.CrossRefGoogle Scholar
Jones, J.A., 1972. Qartzarenite and litharenite facies in the fluvial foreland deposits of the Trenchard Group (Westphalian) Forest of Dean. Sedimentary Geology 8: 177198.CrossRefGoogle Scholar
Jones, J.A., 1989. The influence of contemporaneous tectonic activity on Westphalian sedimentation in the South Wales Coalfield. Occasional Publications of the Yorkshire Geological Society 6: 243253.Google Scholar
Jones, J.A., 1991. A mountain front model for the Variscan deformation of the South Wales coalfield. Journal of the Geological Society 148: 881891.CrossRefGoogle Scholar
Jongmans, W.J., 1911. Anleitung zur Bestimmung der Karbonpflanzen West-Europas mit besonderer Berücksichtigung der in den Niederlanden und den benachbarten Länderen gefundenen oder noch zu erwartenden Arten. I Band. Thallophytae, Equisetales, Sphenophyllales. Mededelingen van de Rijksopsporing van Delfstoffen 3: 1482.Google Scholar
Jongmans, W.J. & Kukuk, P., 1913. Die Calamariacean des Rheinisch-Westfälischen Kohlnenbeckens. Mededelingen van Rijks Herbarium, Leiden 20: 189.Google Scholar
Josten, K.-H., 1991. Die Steinkohlen-Floren Nordwestdeutschlands. Fortschritte in der Geologie von Rheinland und Westfalen 36: 434 pp.Google Scholar
Josten, K.-H., 1995. Stratigraphie des Oberkarbons: Untersuchung der Makrofloren. DGMK-Forschungsbericht 459: 1239.Google Scholar
Josten, K.-H., 2005. Florenstratigraphie des Oberkarbons in Nordwestdeutschland. In: Deutsche Stratigraphische Kommission (ed.): Stratigraphie von Deutschland – Das Oberkarbon (Pennsylvanium) in Deutschland. Courier Forschungsinstitut Senckenberg 254: 119132.Google Scholar
Josten, K.-H. & Van Amerom, H.W.J., 1999. Die Pflanzenfossilien im Westfal D, Stefan und Rotliegend Norddeutschlands. Fortschritte in der Geologie von Rheinland und Westfalen 39: 1168.Google Scholar
Josten, K-H. & Laveine, J-P., 1984. Paläobotanisch-stratigraphische Untersuchungen im Westphalian C-D von Nordfrankreich und Nordwest -deutschland. Fortschritte in der Geologie von Rheinland und Westfalen 32: 89117.Google Scholar
Kalibová-Kaiserová, M., 1956. Zpráva o palynologickém výzkumu českých permokarbonských pánví. Zprávy o Geologických Výzkumoch (ÚÚG) 1955: 8283.Google Scholar
Kędzior, A., Gradziński, R., Doktor, M. & Gmur, D., 2007. Sedimentary history of a Mississippian to Pennsylvanian coal-bearing succession – an example from the Upper Silesia Coal Basin, Poland. Geological Magazine 144: 487496.CrossRefGoogle Scholar
Kellaway, G.A., 1969. The Upper Coal Measures of south-west England compared with those of South Wales and the southern Midlands. Compte rendu, Sixiéme Congres International de Stratigraphie et de Géologie du Carbonifére (Sheffield, 1967) 2: 10391056.Google Scholar
Kellaway, G.A. & Welch, F.B.A., 1993. Geology of the Bristol district. Memoirs of the British Geological Survey, xii + 199 pp.Google Scholar
Kelling, G., 1974. Upper Carboniferous sedimentation in south Wales. In: Owen, T.R. (ed.): The Upper Palaeozoic and post-Palaeozoic rocks of Wales. University of Wales Press (Cardiff): 185244.Google Scholar
Kelling, G., 1988. Silesian sedimentation and tectonics in the South Wales Basin: a brief review. In: Besly, B. & Kelling, G. (eds): Sedimentation in a synorogenic basin complex, the Upper Carboniferous of northwest Europe. Blackie (London): 3842.Google Scholar
Kelling, G. & Collinson, J.D., 1992. Silesian. In: Duff, P.M.D. & Smith, A.J. (eds): Geology of England and Wales. Geological Society (London): 239273.Google Scholar
Kerp, J.H.F., 1996. Post-Varsican late Palaeozoic Northern Hemisphere gymnosperms: the onset to the Mesozoic. Review of Palaeobotany and Palynology 90: 263285.CrossRefGoogle Scholar
Kidston, R., 1901. Carboniferous lycopods and sphenophylls. Transactions of the Natural History Society of Glasgow, New Series 6: 25140.Google Scholar
Kidston, R., 1924. Fossil plants of the Carboniferous rocks of Great Britain. Part 5. Memoirs of the Geological Survey of Great Britain, Palaeontology 2: 377522.Google Scholar
Kidston, R., Cantrill, T.C. & Dixon, E.E.L., 1917. The Forest of Wyre and the Titterstone Clee Hill Coal Fields. Transactions of the Royal Society of Edinburgh 51: 9991084.CrossRefGoogle Scholar
Kidston, R. & Jongmans, W.J., 1917. Flora of the Carboniferous of the Netherlands and adjacent regions. Vol. I, Calamites of western Europe. Mededelingen van de Rijksopsporing van Delfstoffen 7: 1207 (Atlas published in 1915).Google Scholar
Knauff, W., Köwing, K. & Rabitz, A., 1971. Der erste Nachweis von Horizonten mit Foraminiferen im Westfal D von Nordwestdeutschland. Fortschritte in der Geologie von Rheinland und Westfalen 18: 257262.Google Scholar
Kneuper, G., 1967. Neue geologische Karte vom saarländischen Steinkohlengebirge. Schacht und Heim 9-10 (Supplement): 14.Google Scholar
Kneuper, G., 1971. The Saar-Nahe District. In: Bachmans, M. and other 28 co-authors: The Carboniferous deposits in the Federal Republic of Germany. A Review. Fortschritte in der Geologie von Rheinland und Westfalen 19: 146165.Google Scholar
Koenig, C., 1825. Icones fossilium sectiles. London: 44 pp.CrossRefGoogle Scholar
Kombrink, H., Leever, K.A., Van Wees, J.D., Van Bergen, F., David, P. & Wong, T.E., 2008. Late Carboniferous foreland basin formation and Early Carboniferous stretching in Northwestern Europe – Inferences from quantitative subsidence analyses in the Netherlands. Basin Research 20: 377395.CrossRefGoogle Scholar
Konstantinova, V., 1980. Morfologia i razpredelenie na ekzinitovata sastavka vav vaglishtata ot Dobrudzhanskia basein. Izvestiya na Geologicheskiya Institut 12: 4554.Google Scholar
Konstantinova, V. & Nikolov, Z., 1974. Petrology of Upper Carboniferous coal in Bulgaria's Dobrudja Basin. Compte Rendu 7e Congrès International de Stratigraphie et du Géologie du Carbonifère (Krefeld, 1971) 3: 317331.Google Scholar
Korsch, R.J. & Schäfer, A., 1995. The Permo-Carboniferous Saar-Nahe Basin, south-west Germany and north-east France: basin formation and deformation in a strike-slip regime. International Journal of Earth Sciences 84: 293318.Google Scholar
Kotas, A., 1994. Geological background. In: Kotas, A. (ed.): Coal-bed methane potential of the Upper Silesian Coal Basin, Poland. Prace Panstwowego Instytutu Geologicznego (Warszawa) 142: 618.Google Scholar
Kotas, A. & Malczyk, W., 1972. The Paralic Series of the Lower Namurian stage of the Upper Silesian Coal Basin. Prace Instytutu Geologicznego 61, 329425. (In Polish, with English summary).Google Scholar
Kotasowa, A., 1979. Fitostratygrafia najwyzszego odcinka profilu karbonu produktywnego Grnoslaskiego Zaglebia Weglowego. Kwartalnik Geologiczny 23: 525532.Google Scholar
Kotková, J. & Parish, R., 2000. Evidence for high exhumation rate in central European Variscides: U-Pb ages of granulite metamorphism of clasts deposited in Upper Viséan conglomerates. Geolines 10: 4142.Google Scholar
Köwing, K. & Rabitz, A., 2005. Osnabrücker Karbon. In: Deutsche Stratigraphische Kommission (Ed.): Stratigraphie von Deutschland. – Das Oberkarbon (Pennsylvanium) in Deutschland. Courier Forschungsinstitut Senckenberg 254: 255270 Google Scholar
Krings, M., Kerp, H., Taylor, E.L. & Taylor, T.N., 2001. Reconstruction of Pseudomariopteris busquetii, a vine-like Late Carboniferous-Early Permian pteridosperm. American Journal of Botany 88: 767776.CrossRefGoogle ScholarPubMed
Kullmann, J., Wagner, R.H. & Winkler Prins, C.F., 2007. Significance for international correlation of the Perapertú Formation in northern Palencia, Cantabrian Mountains. Tectonic/stratigraphic context and descriptions of Mississippian and upper Bashkirian goniatites. Revista Espñola de Paleontología 22: 127145.Google Scholar
Labandeira, C.C., 2002. Paleobiology of predators, parasitoids, and parasites: death and accommodation in the fossil record of continental invertebrates. Paleontological Society Papers 8: 211249.CrossRefGoogle Scholar
Labandeira, C.C., 2006. The four phases of plant-arthropod associations in deep time. Geologica Acta 4: 409438.Google Scholar
Lane, N., 2002. Oxygen. The molecule that made the world. Oxford University Press: 388 pp.Google Scholar
Laveine, J.-P., 1967. Contribution a l'étude de la flore du terrain houiller. Les Neuroptéridées du Nord de la France. Études Géologiques pour l'Atlas Topographie Souterraine 1(5): 1344.Google Scholar
Laveine, J.-P., 1977. Report on the Westphalian D. In: Holub, V.M. & Wagner, R.H. (eds): Symposium on Carboniferous Stratigraphy. Geological Survey (Prague): 7183.Google Scholar
Laveine, J.-P., 1986. The size of the frond in the genus Alethopteris Sternberg (Pteridospermopsida, Carboniferous). Geobios 19: 4956.CrossRefGoogle Scholar
Laveine, J-P., 1987. La flore du basin houiller du Nord de la France. Biostratigraphie et méthodologie. Annales de la Société géologique du Nord 106: 8793.Google Scholar
Laveine, J.-P., 1989. Guide paléobotanique dans le terrain houiller Sarro-Lorrain. Houillères du Bassin de Lorraine (Merlebach): 154 pp.Google Scholar
Laveine, J.-P., Lemoigne, Y., & Shanzhen, Zhang, 1993. General characteristics and paleobiogeography of the Parispermaceae (genera Paripteris Gothan and Linopteris Presl), pteridosperms from the Carboniferous. Palaeontographica, Abteilung B 230: 81139.Google Scholar
Ledran, C., 1966. Contributions á l'étude des feuilles de Cordaitales. Théses présentées á la Faculté des Sciences de l'Académie de Reims, Série 1.Google Scholar
Leeder, M.R. & Harman, M., 1990. Carboniferous geology of the Southern North Sea Basin and controls on hydrocarbon prospectivity. In: Hardman, R.F.P. and Brooks, J. (ed.): Tectonic Events rsponsible for Britain's Oil and Gas Reserves. Geological Society of London, Special Publication No. 55: 87105.Google Scholar
Libertín, M. & Bek, J., 2008. Review of monolete-producing Carboniferous-Permian sphenophylls. Terra Nostra 2008/2: 168.Google Scholar
Lippolt, H.J., Hess, J.C. & Burger, K., 1984. Isotopische Alter von pyroklastischen Sanidinen aus Kaolin-Kohlentonstein als Korrelationsmarker für das mitteleuropäische Oberkarbon. Fortschritte in der Geologie von Rheinland und Westfalen 32: 119150.Google Scholar
Lojka, R., Drábková, J., Zajíc, J., Sýkorová, I., Franců, J., Bláhová, A. & Grygar, T., 2009. Climate variability in the Stephanian B based on environmental record of the Mšec Lake deposits (Kladno-Rakovník Basin, Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology 280: 7893.CrossRefGoogle Scholar
Lucas, S.G., Schneider, J.W. & Cassinis, G., 2006. Non-marine Permian biostratigraphy and biochronology: an introduction. In: Lucas, S.G., Cassinis, G. and Schneider, J.W. (eds): Non-marine Permian biostratigraphy and biochronology. Geological Society, London, Special Publication 265, 114.Google Scholar
Luckert, J. & Bautsch, H.-J., (in press). Kohlentonsteine. Schriftenreihe Bergbau in Sachsen 15.Google Scholar
Lund, J.J., 2001. Vittatina in Westphalian D of the North Sea? In: 1st Meeting of the Commission Internationale de Microflore du Paléozoïque Spores and Pollen Subcommission, National University of Ireland, Cork, Ireland, 2nd to 7th 09 2001, Programme and Abstracts: 24.Google Scholar
Lyons, P.C. & Darrah, W.C., 1989. Earliest conifers of North America: upland and/or paleoclimatic indicators? Palaios 4: 480486.CrossRefGoogle Scholar
Lyons, P.C., Spears, D.A Outerbridge, W.F., Congdon, R.D. & Evans, H.T., 1994. Euramerican tonsteins: overview, magmatic origin, and depositional-tectonic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 106: 113134.CrossRefGoogle Scholar
Marchioni, D., Gibling, M.R. & Kalkreuth, W., 1996. Petrography and depositional environment of coal seams in the Carboniferous Morien Group, Sydney Coalfield, Nova Scotia. Canadian Journal of Earth Sciences 33: 863874.CrossRefGoogle Scholar
Marshall, A.E. & Smith, A.H.V., 1964. Assemblages of miospores from some Upper Carboniferous coals and their associated sediments in the Yorkshire Coalfield. Palaeontology 7: 656673.Google Scholar
Martin, C.A.L., Doubleday, P.A. & Stewart, S.A., 2002. Upper Carboniferous and Lower Permian tectonostratigraphy on the southern margin of the Central North Sea. Journal of the Geological Society, London 159: 731749.CrossRefGoogle Scholar
Matl, K., 1966. Problem identyfikacji warstw zabrskich (siodlowych s.s.) w niecce chwalowickiej karbonu górnoslaskiego. Przeglad Geologiczny 6: 265268.Google Scholar
Matysová, P., Leichman, J., Grygar, T. & Rössler, R., 2008. Cathodoluminiscence of silicified trunks from the Permo-Carboniferous basis in eastern Bohemia, Czech Republic. European Journal of Mineralogy 20: 217231.CrossRefGoogle Scholar
Maynard, J., Hofmann, W., Dunay, R.E., Bentham, P.N., Dean, K.P. & Watson, I., 1997. The Carboniferous of western Europe: the development of a petroleum system. Petroleum Geoscience 3: 97115.CrossRefGoogle Scholar
McLean, D., Owens, B. & Bodman, D., 2004. Palynostratigraphy of the Upper Carboniferous Langsettian-Duckmantian Stage boundary in Britain. In: Beaudin, A.B. & Head, M.J. (eds): Palynology and micropalaeontology of boundaries. Geological Society of London, Special Publication No. 230: 123135.Google Scholar
McLean, D., Owens, B. & Neves, R., 2005. Carboniferous miospore biostratigraphy of the North Sea. In: Collinson, J.D., Evans, D.J., Holliday, D.W. & Jones, N.S. (eds): Carboniferous hydrocarbon resources: the southern North Sea and surrounding areas. Occasional Special Publication of the Yorkshire Geological Society 7: 1324.Google Scholar
Mencl, V., Matysová, P. & Sakala, J., 2009. Silicified woods from the Czech part of the Intra Sudetic Basin (Late Pennsylvanian, Bohemian Massif, Czech Republic): systematics, silicification and palaeoenvironment. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 252/3: 269288.CrossRefGoogle Scholar
Menning, M., Weyer, D., Wendt, I., Drozdzewski, G. & Hambach, U., 2005. Eine Numerische Zeitskala für das Pennsylvanium in Mitteleuropa. In: Deutsche Stratigraphische Kommission (ed.): Stratigraphie von Deutschland – Das Oberkarbon (Pennsylvanium) in Deutschland. Courier Forschungsinstitut Senckenberg 254: 181189 Google Scholar
Meyen, S.V., 1970. Epidermisuntersuchungen an permischen Landpflanzen des Angaragebietes. Paläontologische Abhandlungen B 3: 523552.Google Scholar
Meyen, S.V., 1982. The Carboniferous and Permian floras of Angaraland (a synthesis). Biological Memoirs 7: 1110.Google Scholar
Migier, T., 1980. The Carboniferous phytostratigraphy of the Lublin coal Basin. Biulletyn Instytutu Geologicznego 328: 6173.Google Scholar
Mitchell, A.A., 2003. Towards a global fossil insect database. In: Krzemińska, E. & Krzemiński, W. (eds): Proceedings of the 2nd Congress on palaeoentomology, 2001. Acta zoologica cracoviensia 46 (Supplement): 5157.Google Scholar
Mitchell, A.A., 2007. EDNA The world-wide fossil insect catalogue. African Invertebrates 48: 249.Google Scholar
Möhring, G. & Schäfer, A., 1990. Caliche im Stefan des Saar-Nahe-Beckens. Mainzer geowissenschaftlicher Mitteilungen 19: 6380.Google Scholar
Moore, L.R. & Blundell, C.R.K., 1952. Some effects of the Malvernian phase of earthmovements in the South Wales Coalfield, a comparison with other coalfields in south Britain. Compte rendu 3e Congrès de Stratigraphie et de Géologie du Carbonifère (Heerlen, 1951) 2: 463473.Google Scholar
Musiał, Ł. & Tabor, M., 1988. Stratygrafia karbonu na podstawie makrofauny. In: Dembowski, Z., Porzycki, J. (eds), Karbon Lubelskiego Zagłębia Węglowego. Prace Instytutu Geologicznego 122: 88122.Google Scholar
Narkiewicz, M., Jarosiński, M., Krzywiec, P. & Waksmundzka, M. I., 2007. Regionalne uwarunkowania rozwoju i inwersji basenu lubelskiego w dewonie i karbonie. (Regional controls on the Lublin Basin development and inversion in the Devonian and Carboniferous). Biuletyn Państwowego Instytutu Geologicznego 422: 1934.Google Scholar
Narkiewicz, M., Poprawa, P., Lipiec, M., Matyja, H. & Miłaczewski, L., 1998. Subsidence development and basin origin. Prace Państwowego Instytutu Geologicznego 165: 3146. (In Polish).Google Scholar
Nascimento, F.E.M. & Laurance, W.F., 2002. Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. Forest Ecology Management 168: 311321.CrossRefGoogle Scholar
Nel, A., Nel, P., Petrulevičius, J.F., Perrichot, V., Prokop, J. & Azar, D., in press. The Wagner Parsimony using Morphological Characters: a new method for palaeosynecological studies. Annales de la Société Entomologique de France.Google Scholar
Němejc, F., 1933. Floristicko–stratigrafická studie o poměrech v uhelných revírech u Žaclére, Svatoňovic a u Žd'árků (blíže Hronova). Věstník Československé Společnosti Nauk, Třída math.-přírodověd 5: 134.Google Scholar
Němejc, F., 1940. The pecopterides of the coal districts of Bohemia. Sborník Národního Musea v Praze 2 B: 128.Google Scholar
Němejc, F., 1953a. Úvod do floristické stratigrafie kamenouhelných oblastí v ČSR. Československé Akademie Věd (Prague): 173 pp.Google Scholar
Němejc, F., 1953b. Taxonomical studies on the fructifications of the Calamitaceae collected in the coal districts of Central Bohemia. Sborník Národního Musea v Praze 9 B: 362.Google Scholar
Němejc, F., 1958. Biostratigrafické studie v karbonu ceského krídla vnitrosudetské páanve. Rozpravy Československé Akademie Věd 68(6): 167.Google Scholar
Novik, E.O., 1952. Kamennougol'naya flora evropeiskoi chasti SSSR. Akademii Nauk SSSR, Moscow, Paleontologiya SSSR, Novaya Seriya 1: 468 pp.Google Scholar
Novik, E.O., 1954. Kamennougol'naya flora vostochnoi chasti Donetskogo basseina. Akademii Nauk Ukrainskoi SSR, Kiev, Trudy Instituta Geologicheskikh Nauk, Seriya Stratigrafii i Paleontologii 7: 138 pp.Google Scholar
Okajima, R., 2008. The controlling factors limiting maximum body size of insects. Lethaia 41: 423430.CrossRefGoogle Scholar
Opluštil, S., 2005. Evolution of the Middle Westphalian river valley drainage system in central Bohemia (Czech Republic) and its palaeogeographic implication. Palaeogeography, Palaeoclimatology, Palaeoecology 222: 223258.CrossRefGoogle Scholar
Opluštil, S. & Cleal, C.J., 2007. A comparative analysis of some Late Carboniferous basins of Variscan Europe. Geological Magazine 144: 417448.CrossRefGoogle Scholar
Opluštil, S. & Pešek, J., 1998. Stratigraphy, palaeoclimatology and palaeogeography of the Late Palaeozoic continental deposits in the Czech Republic. Geodiversitas 20: 597619.Google Scholar
Opluštil, S., Pšenicka, J., Libertín, M., Bashforth, A. & Šimůnek, Z., 2009. A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic. Review of Palaeobotany and Palynology 155: 234274.CrossRefGoogle Scholar
Opluštil, S., Pšenicka, J., Libertín, M. & Šimunek, Z., 2007. Vegetation patterns of Westphalian and lower Stephanian mire assemblages preserved in tuff beds of the continental basins of Czech Republic. Review of Palaeobotany and Palynology 143: 107154.CrossRefGoogle Scholar
Opluštil, S., Sýkorová, I. & Bek, J., 1999. Sedimentology, coal petrography and palynology of the Radnice Member in the S-E part of the Kladno-Rakovník Basin, Central Bohemia. Acta Universitatis Carolinae - Geologica 43: 599623.Google Scholar
Pallardy, S.G. & Kozlowski, T.T., 2008. Physiology of wody plants. 3rd edition. Elsevier (Amsterdam): 454 pp.Google Scholar
Pascucci, V., Gibling, M.R. & Williamson, M.A., 2000. Late Paleozoic to Cenozoic history of the offshore Sydney Basin, Atlantic Canada. Canadian Journal of Earth Sciences 37: 11431165.CrossRefGoogle Scholar
Pearce, T.J., McLean, D., Wray, D., Wright, D.K., Jeans, C.J. & Mearns, E.W., 2005. Stratigraphy of the Upper Carboniferous Schooner Formation, southern North Sea: chemostratigraphy, mineralogy, palynology and Sm-Nd isotope analysis. In: Collinson, J.D., Evans, D.J., Holliday, D.W. & Jones, N.S. (eds): Carboniferous hydrocarbon resources: the southern North Sea and surrounding areas. Occasional Special Publication of the Yorkshire Geological Society 7: 165182.Google Scholar
Peppers, R.A., 1985. Comparison of miospore assemblages in the Pennsylvanian System of the Illinois Basin with those in the Upper Carboniferous of western Europe. Proceedings of the 9e International Carboniferous Congress (Washington & Urbana, 1979) 2: 483502.Google Scholar
Peppers, R.A., 1996. Palynological correlation of major Pennsylvanian (Middle and Upper Carboniferous) chronostratigraphic boundaries in the Illinois and other coal basins. Geological Society of America Memoir 188: 1111.Google Scholar
Peppers, R.A., 1997. Palynology of the Lost Branch Formation of Kansas – new insights on the major floral transition at the Middle-Upper Pennsylvanian boundary. Review of Palaeobotany and Palynology 98: 223246.CrossRefGoogle Scholar
Pešek, J., 1994. Carboniferous of Central and Western Bohemia (Czech Republic). Czech Geological Survey (Prague): 61 pp.Google Scholar
Pešek, J., 2004. Late Palaeozoic limnic basis and coal deposits of the Czech Republic. Folia Musei Rerum Naturalium Bohemiae Occidentalis, Geologica 1: 1188.Google Scholar
Pešek, J., Jaroš, J., Malý, L., Martínek, K., Prouza, V., Spudil, J. & Tásler, R., 2001. Geologie a ložiska svrchnopaleozoických limnických pánví České republiky. Český geologický ústav (Prague): 243 pp.Google Scholar
Pešek, J., Opluštil, S., Kumpera, O., Holub, V. & Skoček, V., 1998. Paleogeographic Atlas, Late Paleozoic and Triassic Formations, Czech Republic. Czech Geological Survey (Prague): 53 pp.Google Scholar
Pešek, J. & Urban, M., 1990. The tectonic evolution of the Plzen basin (Upper Carboniferous, West Bohemia): a review and reinterpretation. Folia Musei Rerum Naturalium Bohemiae Occidentalis, Geologica 32: 156.Google Scholar
Petrunkevitch, A., 1953. Paleozoic and Mesozoic Arachnida of Europe. Memoirs of the Geological Society of America 53: 1128.CrossRefGoogle Scholar
Peyser, C.E. & Poulsen, C.J., 2008. Controls on Permo-Carboniferous precipitation over tropical Pangaea: a GCM sensitivity study. Palaeogeography, Palaeoclimatology, Palaeoecology 268: 181192.CrossRefGoogle Scholar
Pfefferkorn, H.W., Archer, A.W. & Zodrow, E.L., 2001. Modern tropical analogs for Carboniferous standing forests: comparison of extinct Mesocalamites with extant Montrichardia . Historical Biology 15: 235250.CrossRefGoogle Scholar
Pfefferkorn, H.W., Gastaldo, R.A., DiMichele, W.A. & Phillips, T.L., 2008. Pennsylvanian tropical floras from the United States as a record of changing climate. In: Fielding, C.R., Frank, T.D. & Isbell, J.L. (eds): Resolving the Late Paleozoic ice age in time and space. Geological Society of America Special Paper 441: 305316.Google Scholar
Pfefferkorn, H.W. & Thomson, M.C., 1982. Changes in dominance patterns in upper Carboniferous plant-fossil assemblages. Geology 10: 641644.2.0.CO;2>CrossRefGoogle Scholar
Pharaoh, T.C., Winchester, J.A., Verniers, J., Lassen, A. & Seghedi, A., 2006. The western accretionary margin of the East European Craton: an overview. In: Gee, D.G. & Stephenson, R.A. (eds): European Lithosphere Dynamics. Geological Society, London, Memoirs, 32, 291311.Google Scholar
Phillips, T.L., 1981. Stratigraphic occurrences and vegetational patterns of Pennsylvanian pteridosperms in Euramerican coal swamps. Review of Palaeobotany and Palynology 32: 526.CrossRefGoogle Scholar
Phillips, T.L. & Cecil, C.B., 1985. Paleoclimatic controls on coal resources of the Pennsylvanian System of North America – introduction and overview of contributions. International Journal of Coal Geology 5: 16.CrossRefGoogle Scholar
Phillips, T.L. & DiMichele, W.A., 1981. Paleoecology of Middle Pennsylvanian age coal swamps in southern Illiniois/Herrin Coal Member at Sahara Mine No. 6. In: Niklas, K.J. (ed.): Paleobotany, paleoecology and evolution. Praeger Press (New York): 231285.Google Scholar
Phillips, T.L. & DiMichele, W.A., 1992. Comparative ecology and life-history biology of arborescent lycopsids in Late Carboniferous swamps of North America. Annals of the Missouri Botanical Garden 79: 560588.CrossRefGoogle Scholar
Phillips, T.L., Peppers, R.A. & DiMichele, W.A., 1985. Stratigraphic and inter-regional changes in Pennsylvanian coal-swamp vegetation: environmental inferences. International Journal of Coal Geology 5: 43109.CrossRefGoogle Scholar
Pietzsch, K., 1942. Die sächsischen Vorkommen. In: Der Deutsche Steinkohlenbergbau, 1: 243251 Google Scholar
Plotnick, R.E., Kenig, F., Scott, A. & Glasspool, I., 2008. Stop 3: exceptionally well-preserved paleokarst and Pennsylvanian cave-fills. In: Curry, B. (ed.): Deglacial history and paleoenvironments of northern Illinois. Illinois State Geological Survey. Open File Report 2008-01: 7987.Google Scholar
Poole, E.G., 1969. The stratigraphy of the Geological Survey Apley Barn Borehole, Witney, Oxfordshire. Bulletin of the Geological Survey of Great Britain 29: 177.Google Scholar
Porzycki, J., 1979. Litostratygrafia osadów karbonu Lubelskiego Zagłębia Węglowego. In: Migier, T. (ed.): Stratygrafia Węglonośnej Formacji Karbońskiej w Polsce, II Sympozjum Sosnowiec, 4-5 maja 1977: 1927.Google Scholar
Potonié, R. & Kremp, G., 1954. Die Gattungen der Palaözoischen Sporae dispersae und ihre Stratigraphie. Geologische Jahrbuch 69: 111193.Google Scholar
Potonié, R. & Kremp, G., 1955. Die Sporae dispersae des Ruhrkarbons ihre Morphographie und Stratigraphie mit Ausblicken auf Arten anderer Gebiete und Zeitabschnitte. Teil I. Palaeontographica, Abteilung B 98: 1136.Google Scholar
Poulsen, C.J., Pollard, D. Montañez, I. & Rowley, D., 2007. Late Paleozoic tropical climate response to Gondwanan glaciations. Geology 35: 771774.CrossRefGoogle Scholar
Powell, J.H., Chisholm, J.I., Bridge, D.M., Rees, J.G., Glover, B.W. & Besly, B.M., 2000. Stratigraphical framework for Westphalian to Early Permian red-bed successions of the Pennine Basin. Geological Survey (Keyworth) (Research Report No. R/00/01): 28 pp.Google Scholar
Proctor, C.J., 1994. Carboniferous fossil plant assemblages and palaeoecology at the Writhlington Geological Nature Reserve. In: Jarzembowski, E.A. (ed.): Writhlington Special Issue. Proceedings of the Geologists' Association 105: 277286.Google Scholar
Prokop, J. & Nel, A., 2007. An enigmatic Palaeozoic stem-group: Paoliida, designation of new taxa from the Upper Carboniferous of the Czech Republic (Insecta: Paoliidae, Katerinkidae fam. nov.). African Invertebrates 48, 7786.Google Scholar
Prokop, J. & Ren, D., 2007. New significant fossil insects from the Upper Carboniferous of Ningxia in northern China (Palaeodictyoptera, Archaeorthoptera). European Journal of Entomology 104: 267275.CrossRefGoogle Scholar
Prokop, J., Nel, A. & Hoch, I., 2005. Discovery of the oldest known Pterygota in the Lower Carboniferous of the Upper Silesian Basin in the Czech Republic (Insecta: Archaeorthoptera). Geobios 38: 383387.CrossRefGoogle Scholar
Prokop, J., Smith, R., Jarzembowski, E. A. & Nel, A., 2006. New homoiopterids from the Late Carboniferous of England (Insecta: Palaeodictyoptera). Comptes Rendus Palevol 5: 867873.CrossRefGoogle Scholar
Prüfert, J., 1994. Erläuterungen zur Geologischen Karte von Nordrhein-Westfalen 1:25 000; Blatt 5002 Geilenkirchen (2. Edition). Krefeld.Google Scholar
Pšenicka, J., Bek, J., Cleal, C.J., Wittry, J. & Zodrow, E.L., 2009. Description of synangia and spores of the holotype of the Carboniferous fern Lobatopteris miltoni, with taxonomic comments. Review of Palaeobotany and Palynology 155: 133144.CrossRefGoogle Scholar
Pšenička, J. Zodrow, E.L., Mastalerz, M., & Bek, J., 2005. Functional groups of fossil marattialeans,: chemotaxonomic implications for Pennsylvanian tree ferns and pteridophylls. International Journal of Coal Geology 61: 259280.CrossRefGoogle Scholar
Purkyňová, E., 1962. Flóra produktivního karbonu ostravsko-karvinského revíru. Pracovní metody geologické služby 3: 1116.Google Scholar
Purkyňová, E., 1986. Floristická zonálnost žacléřského souvrství v důlním poli Dolu Šverma u Žacléře (vnitrosudetská pánev). Časopis Slezského Muzea Opava (A) 35: 5763.Google Scholar
Quirk, D.G., 1993. Interpreting the Upper Carboniferous of the Dutch Cleaver Bank High. In: Parker, J.R. (ed.): Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference. Geological Society (London): 687706.Google Scholar
Quirk, D.G., 1997. Sequence stratigraphy of the Westphalian in the northern part of the Southern North Sea. In: Ziegler, K., Turner, P. & Daines, S.R. (eds): Petroleum Geology of the Southern North Sea: Future Potential. Geological Society of London, Special Publication No. 123: 153168.Google Scholar
Rabitz, G., 1966. Cordaiten aus dem flözführenden Oberkarbon des Ruhrgebiets. Fortschritte in der Geologie von Rheinland und Westfalen 13: 303316.Google Scholar
Ramsbottom, W.H.C., Calver, M.A., Eagar, R.M.C., Hodson, F., Holliday, D.W., Stubblefield, C.J. & Wilson, R.B., 1978. A correlation of Silesian rocks in the British Isles. Geological Society (London) (Special Report No.10): 182.Google Scholar
Raoult, J. F. & Meilliez, F., 1987. The Variscan Front and the Midi Fault between the Channel and the Meuse River. Journal of Structural Geology 9: 473479.CrossRefGoogle Scholar
Read, C.B. & Mamay, S.H., 1964. Upper Paleozoic floral zones and floral provinces of the United States. Professional Papers of the U. S. Geological Survey 454-K: 135.Google Scholar
Remy, W., 1955. Untersuchungen von kohlig erhaltenen fertilen und strilen Sphenophyllen und Formen unsicherer systematischer Stellung. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für Chemie, Geologie und Biologie 1955 1: 540.Google Scholar
Remy, W. & Remy, R., 1962. Sphenophyllum majus Bronn sp., Sphenophyllum saarensis n. sp. und Sphenophyllum orbicularis n. sp. aus dem Karbon des Saargebietes. Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin 1962 4: 235246.Google Scholar
Ren, D., Nel, A. & Prokop, J., 2008. New early griffenfly, Sinomeganeura huangheensis from the Late Carboniferous of northern China (Meganisoptera: Meganeuridae). Insect Systematics & Evolution 38: 223229.CrossRefGoogle Scholar
Rippon, J.H., 1996. Sand body orientation, palaeoslope analysis and basin-fill implications in the Westphalian A-C of Great Britain. Journal of the Geological Society, London 153: 881900.CrossRefGoogle Scholar
Rolfe, W.D.I., 1980. Early invertebrate terrestrial faunas. In: Panchen, A.L. (ed.): The terrestrial environment and the origin of land vertebrates. Systematics Association Special Volume 15: 117157.Google Scholar
Roscher, M. & Schneider, J.W., 2005. An annotated correlation chart for continental late Pennsylvanian and Permian basins and the marine scale. In: Lucas, S.G. & Ziegler, K.E. (eds): The non-marine Permian. Bulletin of the New Mexico Museum of Natural History and Science 30: 282n291.Google Scholar
Rösler, J., Pälchen, W., Odssenkopf, W. & Taubert, P., 1967. Die Kohlentonsteine aus den Steinkohlenbecken von Zwickau-Ölsnitz, Freital-Döhlen (bei Dresden) und Doberlug. Freiberger Forschungshefte C 211: 1146.Google Scholar
Rothwell, G.W., 1975. The Callistophytaceae (Pteridospermopsida): I. Vegetative structures. Palaeontographica, Abteilung B 151: 176196.Google Scholar
Rothwell, G.W., 1981. The Callistophytales (Pteridospermopsida). Reproductively sophisticated gymnosperms. Review of Palaeobotany and Palynology 32: 103121.CrossRefGoogle Scholar
Rothwell, G.W., Scheckler, S.E. & Gillespie, W.H., 1989. Elkinsia gen. nov., a Late Devonian gymnosperm with cupulate ovules. Botanical Gazette 150: 170189.CrossRefGoogle Scholar
Rothwell, G. W. & Warner, S., 1984. Cordaioxylon dumusum n. sp (Cordaitales). I. Vegetative structures. Botanical Gazette 145: 275291.CrossRefGoogle Scholar
Rothwell, N.R. & Quinn, P., 1987. The Welton Oilfield. In: Brooks, J. & Glennie, K. (eds): Petroleum geology of North West Europe. Graham & Trotter (London): 181189.Google Scholar
Rowley, D.B., Raymond, A., Parrish, J.T., Lottes, A.L., Scotese, C.R. & Ziegler, A.M., 1985. Carboniferous paleogeographic, phytogeographic, and paleoclimatic reconstructions. International Journal of Coal Geology 5: 742.CrossRefGoogle Scholar
Royer, D.L., Berner, R.A., Montañez, I.P., Tabor, N.J. & Beerling, D.J., 2009. CO2 as a primary driver of Phanerozoic climate. GSA Today 14: 410.2.0.CO;2>CrossRefGoogle Scholar
Rutkowski, J., 1972. Osady stefanu Górnośląskiego Zagłębia Węglowego. Prace Instytutu Geologicznego 61: 539556.Google Scholar
Ryan, R.J., Boehner, R.C. & Calder, J.H., 1991. Lithostratigraphical revisions of the upper Carboniferous to lower Permian strata in the Cumberland Basin, Nova Scotia and the regional implications for the Maritimes Basin in Atlantic Canada. Bulletin of Canadian Petroleum Geology 39: 289314.Google Scholar
Saunders, W.B. & Ramsbottom, W.H.C., 1986. The mid-Carboniferous eustatic event. Geology 14: 208212.2.0.CO;2>CrossRefGoogle Scholar
Schäfer, A., 1986. Die Sedimente des Oberkarbons und Unterrotliegenden im Saar-Nahe-Becken. Mainzer Geowissenschaftliche Mitteilungen 15: 239365.Google Scholar
Schäfer, A., 1989. Variscan molasse in the Saar-Nahe Basin (W-Germany), Upper Carboniferous and Lower Permian. Geologische Rundschau 78: 499524.CrossRefGoogle Scholar
Schäfer, A., 2005. Sedimentologisch-numerisch begründeter Stratigraphischer Standard für das Permo-Karbon des Saar-Nahe-Beckens. In: Deutsche Stratigraphische Kommission, V. (ed.): Stratigraphie von Deutschland V. Das Oberkarbon (Pennsylvanium) in Deutschland. Courier Forschungsinstitut Senckenberg 254: 369394.Google Scholar
Schäfer, A. & Korsch, R.J., 1998. Formation and sediment fill of the Saar-Nahe Basin (Permo-Carboniferous, Germany). Zeitschrift der Deutschen Geologischen Gesellschaft 149: 233269.CrossRefGoogle Scholar
Schäfer, A. & Sneh, A., 1983. Lower Rotliegend fluvio-lacustrine sequences in the Saar-Nahe Basin. Geologische Rundschau 72: 11351145.CrossRefGoogle Scholar
Scheuvens, D. & Zulauf, G., 2000. Exhumation, strain location, and emplacement of granitoids along the western part of the Central Bohemian shear zone (Bohemian Massif). International Journal of Geological Sciences 89: 617630.Google Scholar
Schindler, T. & Heidtke, V.H (eds), 2007. Kohlensümpfe, Seen und Halbwüsten. Dokumente einer rund 300 Millionen Jahre alten Lebewelt zwischen Saarbrücken und Mainz. POLLICHIA Sonderveröffentlichung 10: 1318.Google Scholar
Schneider, J.W., Goretzki, J. & Rößler, R., 2005a. Biostratigraphisch relevante nicht-marine Tiergruppen im Karbon der variscischen. Vorsenke und der Innensenken. Courier Forschungsinstitut Senckenberg 254: 103118.Google Scholar
Schneider, J.W., Hoth, K., Gaitzsch, B.G., Berger, H.J., Steinborn, H., Walter, H. & Zeidler, M.K., 2005b. Carboniferous stratigraphy and development of the Erzgebirge Basin, East Germany. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 156: 431466.CrossRefGoogle Scholar
Schneider, J.W. & Rößler, R., 1996. A Permian calcic paleosol containing rhizoliths and microvertebrate remains – environment and taphonomy; Erzgebirge basin, Germany. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 202: 243258.CrossRefGoogle Scholar
Schneider, J.W., Schretzenmayr, S. & Gaitzsch, B.G., 1998. Excursion Guide. Rotliegend reservoirs at the margin of the southern Permian Basin. Leipziger Geowissenschaften 7: 1544.Google Scholar
Schneider, J.W. & Werneburg, R., 2006. Insect biostratigraphy of the European continental Late Pennsylvanian and Early Permian. In: Lucas, S.G., Cassinis, G. & Schneider, J.W. (eds): Non-marine Permian biostratigraphy and biochronology. Geological Society, London, Special Publication 265: 325336.Google Scholar
Schneider, J.W., Werneburg, R., Lucas, S.G. & Béthoux, O., 2003. Insect biochronozones – a powerful tool in the biostratigraphy of the Pennsylvanian and the Permian. Abstracts. XVth International Congress on Carboniferous and Permian Stratigraphy, 10-15 08. Utrecht: 470473.Google Scholar
Schultka, S. & Kahlert, E., in press. Zur Makroflora der Zwickau-Formation. Schriftenreihe Bergbau in Sachsen 15.Google Scholar
Schuster, A., 1968. Karbonstratigraphie nach Bohrlochmessungen. Erdöl-Erdgas Zeitschrift 84: 439457.Google Scholar
Schuster, A., 1971. Die Westfal Profile der Bohrungen Bockraden 1-5 bei Ibbenbüren und ihre Parallelisierung mit dem Bohrprofil Norddeutschland 8 und dem jüngsten Ruhrkarbon nach Bohrlochmessungen. Fortschritte in der Geologie von Rheinland und Westfalen 18: 3988 Google Scholar
Scott, A.C., 1977. A review of the ecology of Upper Carboniferous plant assemblages, with new data from Strathclyde. Palaeontology 20: 447473.Google Scholar
Scott, A.C., 1978. Sedimentological and ecological control of Westphalian B plant assemblages from West Yorkshire. Proceedings of the Yorkshire Geological Society 41: 461508.CrossRefGoogle Scholar
Scott, A.C., 1979. The ecology of Coal Measure floras from northern Britain. Proceedings of the Geologists' Association 90: 97116.CrossRefGoogle Scholar
Scott, A.C. & Chaloner, W.G., 1983. The earliest fossil conifer from the Westphalian B of Yorkshire. Proceedings of the Royal Society of London, Series B 220: 163182.Google Scholar
Scott, A.C., Galtier, J. & Clayton, G., 1985. A new late Tournaisian (Lower Carboniferous) flora from the Kilpatrick Hills, Scotland. Review of Palaeobotany and Palynology 44: 8199.CrossRefGoogle Scholar
Selter, V., 1990. Sedimentologie und Klimaentwicklung im Westfal C/D und Stefan des nordwestdeutschen Oberkarbon-Beckens. DGMK Berichte 310 (unpublished report).Google Scholar
Šetlík, J., 1977. Results on recent investigation on the Carboniferous flora of Bohemia. In: Holub, V. & Wagner, R. H. (eds): Symposium on Carboniferous Stratigraphy. Czechoslovakian Geological Survey (Prague): 315340.Google Scholar
Seward, A.C., 1898. Fossil plants. Volume 1. Cambridge University Press: 452 pp.Google Scholar
Shabica, C.W. & Hay, A.A. (eds), 1997. The fossil fauna of Mazon Creek. Northeastern Illinois University (Chicago): 308 pp.Google Scholar
Sheil, D. & Murdiyarso, D., 2009. How forests attract rain: an examination of a new hypothesis. BioScience 59: 341347.CrossRefGoogle Scholar
Shukla, J., Nobre, C. & Sellers, P., 1990. Amazon deforestation and climate change. Science 247: 13221325.CrossRefGoogle ScholarPubMed
Shulga, W.F., Zdanowski, A., Zaytseva, L.B., Ivanova, A.W., Korol, N.D., Kotasowa, A., Kotas, A., Kostik, I.E., Lelik, B.I., Migier, T., Manitshev, W.I., Matrofailo, M.N., Ptak, B., Savtchuk, W.S., Sedaeva, G.M. & Stepanenko, J.G., 2007. Correlation of the Carboniferous coal-bearing formations of the Lviv-Volyn and Lublin basins. (in Russian, English summary). Kiev (National Academy of Sciences of Ukraine, and the Institute of Geological Sciences, Polish State Geological Institute – Upper Silesian Branch: 428 pp.Google Scholar
Shute, C.H. & Cleal, C.J., 2002. Ecology and growth habit of Laveineopteris: a gymnosperm from the Late Carboniferous tropical rain forests. Palaeontology 45: 943972.CrossRefGoogle Scholar
Siedlecki, S., 1951. Utwory stefańskie i permskie we wschodniej części Polskiego Zagłębia Węglowego. Acta Geologica Polonica 2, 300348.Google Scholar
Šimůnek, Z., 1988. Varieties of the species Alethopteris grandinioides Kessler from the Kladno Formation (Westphalian C, D, Bohemia). Casopis pro mineralogii a geologii 33: 381394.Google Scholar
Šimůnek, Z., 1994. Megaflora of tuffaceous interbeds in coal seams of the Nýřany Member (Westphalian D) at the Dobré štěstí Mine in the Plzeň Basin (Czech Republic). Vest. Cesk. geol. œst., 69, 31-46.Google Scholar
Šimůnek, Z., 2007a. Cuticlular analysis of medullosalean pteridosperms from the Radnice Member (Pennsylvanian) of the Central and Western Bohemian basins (Czech Republic). In: Wong, Th.E. (ed.): Proceedings of the XVth International Congress on Carboniferous and Permian Straigraphy. Utrecht, the Netherlands, 10-16 08. Royal Netherlands Academy of Arts and Sciences (Amsterdam): 389402.Google Scholar
Šimůnek, Z., 2007b. New classification of the genus Cordaites from the Carboniferous and Permian of the Bohemian Massif, based on cuticle micromorphology. Sborník Národního Muzea v Praze, Serie B, Přírodní Vědy 62: 97210.Google Scholar
Skoček, V., 1990. Stephanian lacustrine-deltaic sequence in central and north-eastern Bohemia (in Czech with English summary). Sborník geologických ved, Rada Geologie 45: 91122.Google Scholar
Skoček, V., 1993. Fossil calcretes in the Permocarboniferous sequences; Bohemian Massif, Czechoslovakia. Véstník Českého geologického ústavu 68: 4551.Google Scholar
Skoček, V. & Holub, V., 1968. Origin, age and characteristics of fossil Late Palaeozoic weathering residues in the Bohemian Massif. Sborník geologických ved, Rada Geologie 14: 346.Google Scholar
Skopec, J., Pešek, J. & Kobr, M., 2000. Fosilní řícní sít́ na svrchu slánského souvrství v mšensko-roudnické pánvi. Uhlí rudy geologický průzkum 5: 311.Google Scholar
Smith, A.H.V., 1962. The palaeoecology of Carboniferous peats based on the miospores and petrography of bituminous coals. Proceeding of Yorkshire Geological Society 33: 423474.CrossRefGoogle Scholar
Smith, A.H.V. & Butterworth, M.A., 1967. Miospores in the coal seams of the Carboniferous of Great Britain. Special Papers in Palaeontology 1: 1324.Google Scholar
Stampfli, G.M. & Borel, G.D., 2004. The TRANSMED Transects in Space and Time: constraints on the paleotectonic evolution of the Mediterranean Domain. In: Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M. & Ziegler, P. (eds): The TRANSMED Atlas: the Mediterranean Region from Crust to Mantle. Springer Verlag (Heidelberg): 5380.CrossRefGoogle Scholar
Stead, J.T.G., 1974. The sedimentology of the Upper Coal Measures of the Forest of Dean and adjacent areas. Unpublished Ph. D. Thesis, University of Wales, Swansea.Google Scholar
Sternberg, K.M., 1838. Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt., Volume 2, Parts 7-8. G. Hässe und Söhne (Prague): 81220.Google Scholar
Stewart, W.N. & Rothwell, G.W., 1993. Paleobotany and the evolution of plants (2nd edition). Cambridge University Press: 521 pp.Google Scholar
Stidd, B.M., 1974. Evolutionary trends in the Marattiales. Annals of the Missouri Botanical Gardens 61: 388407.CrossRefGoogle Scholar
Stille, H., 1924. Grundfragen der vergleichenden Tektonik. Borntraeger (Berlin): 324 pp.Google Scholar
Streel, M., Somers, Y. & Dusar, M., 2008. The miospores of the Westphalian C / Westphalian D transition in the Campine Basin (Belgium) in the context of the macroflora zonations. Geologica Belgica 11: 243250.Google Scholar
Strehlau, K., 1990. Facies and genesis of Carboniferous coal seams of Northwest Germany. International Journal of Coal Geology 15: 245292.CrossRefGoogle Scholar
Süss, M.P., 1996. Sedimentologie und Tektonik des Ruhr-Beckens: Sequenzstratigraphische Interpretation und Modellierung eines Vorlandbeckens der Varisziden. Doktorate Thesis, Rheinische Friedrich-Wilhelms-Universität, Bonn.Google Scholar
Süss, M.P., 2005. Zyklotheme, Zyklen und Sequenzen Steuernde Faktoren der Sedimentation im Ruhr-Becken. In: Deutsche Stratigraphische Kommission (ed.): Stratigraphie von Deutschland – Das Oberkarbon (Pennsylvanium) in Deutschland. Courier Forschungsinstitut Senckenberg 254: 161168 Google Scholar
Süss, M.P., Drozdzewski, G. & Schäfer, A., 2000. Sequenzstratigraphie des kohleführenden Oberkarbons im Ruhr-Becken. Geologisches Jahrbuch A 156: 45106.Google Scholar
Süss, M.P., Drozdzewski, G. & Schäffer, A., 2007. Sedimentary environment dynamics and the formation of coal in the Pennsylvanian Variscan foreland in the Ruhr Basin (Germany, Western Europe). International Journal of Coal Geology 69: 267287.CrossRefGoogle Scholar
Talens, J. & Wagner, R.H., 1995. Stratigraphic implications of Late Carboniferous and Early Permian megafloras in Lérida, south-central Pyrenees; Comparison with the Cantabrian Mountains. Coloquios de Paleontologia 47: 177192.Google Scholar
Tandon, S.K. & Gibling, M.R., 1997. Calcretes at sequence boundaries in Upper Carboniferous cyclothems of the Sydney Basin, Atlantic Canada. Sedimentary Geology 112: 4367.CrossRefGoogle Scholar
Tásler, R., Čadková, Z., Dvořák, J., Fediuk, F., Chaloupský, J., Jetel, J., Kaiserová-Kalibová, M., Prouza, V., Schovánková-Hrdličková, D., Středa, J., Střída, M. & Šetlík, J., 1979. Geology of the Bohemian part of the Intra-Sudetic Basin. Academie (Prague): 296 pp. (in Czech with English Summary).Google Scholar
Taylor, T.N., 1969. On the structure of Bowmanites dawsonii spores. Palaeontographica, Abteilung B 125: 6572.Google Scholar
Taylor, T.N., 1970. The morphology of Bowmanites dawsonii spores. Micropaleontology 16: 243248.CrossRefGoogle Scholar
Taylor, W.A., 1986. Ultrastructure of sphenophyllalean spores. Review of Palaeobotany and Palynology 47: 105128.CrossRefGoogle Scholar
Tenchov, Y.G., 1976. Composition pecularities of the Carboniferous flora of the Svoge Basin, West Bulgaria. Geologica Balcanica 6: 311.Google Scholar
Tenchov, Y.G., 1987. Fosilite na Balgariya. I (1) Paleozoi fosilna flora. Megaflora. 1. Chlenestostableni i lepidofiti. Bulgarian Academy of Sciences (Sofia): 165 pp.Google Scholar
Tenchov, Y.G., 1989. Possible position of the Variscan chains between the Balkan and Caucasus. Geologica Balcanica 19(3): 37.Google Scholar
Tenchov, Y., 1993. Sedimentation and erosion during the Late Carboniferous in the Dobrudzha coal field (northeast Bulgaria). Geologica Balcanica 23: 318.CrossRefGoogle Scholar
Tenchov, Y.G., 2004a. The Rakovski Formation (Carboniferous, NE Bulgaria) – stratigraphy, sedimentary conditions and interpretation. Geologica Balcanica 34: 8596.CrossRefGoogle Scholar
Tenchov, Y.G., 2004b. The genus Lonchopteris Brongniart in the Dobrudzha Carboniferous Basin, Bulgaria. Geologica Balcanica 34: 97104.CrossRefGoogle Scholar
Tenchov, Y.G., 2005. Early Westphalian sediments of Dobrudzha Coalfield (NE Bulgaria) – an interpretation of their stratigraphy and sedimentation conditions. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 156: 467480.CrossRefGoogle Scholar
Tenchov, Y.G., 2007a. The Carboniferous of Svoge Coalfield (Bulgaria). Geologica Balcanica 36; 515.CrossRefGoogle Scholar
Tenchov, Y.G., 2007b. Late Westphalian and early Stephanian sediments of the Dobrudzha Coalfield, NE Bulgaria. Geological Magazine 144: 497511.CrossRefGoogle Scholar
Tenchov, Y., 2007c. Carboniferous megaflora composition peculiarities of Svoge and Dobrudzha coalfield, Bulgaria. Abstracts, IGCP 469 Meeting (Leiden).Google Scholar
Tenchov, Y.G. & Kulaksuzov, G., 1972. Litostratigrafiya na gorniya Karbon ot Dobrudzhanskiya vaglishten baseyn. Izvestiya na Geologicheskiya Institut, Seriya Stratigrafiya i Lithologiya 21: 4162.Google Scholar
Tenchov, Y.G. & Popov, A.B., 1987. The genus Linopteris Presl (Late Carboniferous) in Dobrudza Coal Basin. Geologica Balcanica 17: 1532.Google Scholar
Tenchov, Y.G. & Popov, A.B., 1991. Morphogenetical transition between genera Neuropteris (Brongniart) and Reticulopteris Gothan in Dobrudza Coal Basin. Geologica Balcanica 20: 4151.CrossRefGoogle Scholar
Thomas, B.A., 1978. New records of Carboniferous lycopod cones. Geological Journal 13: 1114.CrossRefGoogle Scholar
Thomas, B.A., 1997. Upper Carboniferous herbaceous lycopsids. Review of Palaeobotany and Palynology 95: 129153.CrossRefGoogle Scholar
Thomas, B.A., 2005. A reinvestigation of Selaginella species from the Asturian of the Zwickau coalfield, Germany and their assignment to the new sub-genus Hexaphyllum . Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 156: 112.CrossRefGoogle Scholar
Thomas, B.A., 2007. Phytogeography of Asturian (Westphalian D) lycophytes throughout the Euramerican belt of coalfields. Geological Magazine 144: 457463.CrossRefGoogle Scholar
Thomas, B.A. & Cleal, C.J., 1994. Plant fossils from the Writhlington Nature Reserve. Proceedings of the Geologists' Association 105: 1532.CrossRefGoogle Scholar
Thomas, B.A. & Tenchov, Y., 2004. The Upper Westphalian lycophyte floras of the Dobrudzha Coalfield (Bulgaria) and a comparison with those of southern Britain and Cape Breton (Canada). Geologica Balcanica 34: 105110.CrossRefGoogle Scholar
Torsvik, T.H. & Cocks, R.M., 2004. Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review. Journal of the Geological Society, London 161: 555572.CrossRefGoogle Scholar
Trotter, F.M., 1942. Geology of the Forest of Dean coal and ironstone field (Part). Memoirs of the Geological Survey U.K. (London): 95 pp.Google Scholar
Uhl, D. & Cleal, C.J., in press. Late Carboniferous vegetation change in lowland and intramontane basins in Germany. International Journal of Coal Geology.Google Scholar
Valterová, P., 1979. Paleopalynologicko-stratigrafický výzkum českého křídla vnitrosudetské pánve. MSc Thesis, Prague.Google Scholar
Van Adrichem Boogaert, H.A. & Kouwe, W.F.P., 1993. Stratigraphic nomenclature of the Netherlands, revision and update by RGD and NOGEPA. Mededelingen Rijks Geologische Dienst 50: sections A-J.Google Scholar
Van Amerom, H.W.J., 1996. The biostratigraphy of borehole ‘De Lutte-6’ (East Twente, the Netherlands). Mededelingen Rijks Geologische Dienst, Nieuwe Serie 55: 8398.Google Scholar
Van Amerom, H.W.J. & Pagnier, H.J.M., 1990. Palaeoecological studies of Late Carboniferous plant macrofossils from Borehole Kemperkoul-1 (Sittard, the Netherlands). Mededelingen Rijks Geologische Dienst, Nieuwe Serie 44–4: 119.Google Scholar
Van Buggenum, J.M. & Den Hartog Jager, D.C., 2007. Silesian. In: Wong, Th.E., Batjes, D.A.J. & de Jager, J.: Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences: 4362.Google Scholar
Van der Laar, J.G.M. & Van der Zwan, C.J., 1996. Palynostratigraphy and palynofacies reconstruction of the Upper-Carboniferous of borehole De Lutte-6 (East Twente, the Netherlands). Mededelingen Rijks Geologische Dienst 55: 6182.Google Scholar
Van der Meer, M. & Pagnier, H., 1996. Sediment petrography of sandstone bodies of borehole ‘De Lutte-06’ (East Twente, the Netherlands) and its regional significance. Mededelingen Rijks Geologische Dienst, 55: 3160.Google Scholar
Van der Zwan, C.J., Van der Laar, J.G.M., Pagnier, H.J.M. and Van Amerom, H.J.W., 1993. Palynological, ecological and climatological synthesis of the upper Carboniferous of the well De Lutte-6 (East Netherlands). Comptus Rendus XII International Conference on the Carboniferous and Permian 1: 167186.Google Scholar
Van Hoof, T.B., Abbink, O.A., van Waveren, I.M. & Van Konijnenburg-van Cittert, J.H.A., 2007. Revision of the palaeobotanical and palynological interpretation of the Late Carboniferous interval of the De Lutte-6 well, the Netherlands. CIMP Lisbon Abstracts: 103.Google Scholar
Van Waveren, I.M., Abbink, O.A., Van Hoof, T.B. & Van Konijnenburg-van Cittert, J.H.A., 2008. Revision of the late Carboniferous megaflora from the De Lutte-06 well (Twente, the Netherlands), and its stratigraphical implications. Netherlands Journal of Geosciences 87: 339352.CrossRefGoogle Scholar
Vasey, G.M., 1994. Classification of Carboniferous non-marine bivalves: systematics versus stratigraphy. Journal of the Geological Society 151: 10231033.CrossRefGoogle Scholar
Vasey, G.M. & Bowes, G.E., 1985. The use of cluster analysis in the study of some non-marine bivalvia from the Westphalian D of the Sydney Coalfield, Nova Scotia, Canada. Journal of the Geological Society 142: 397410.CrossRefGoogle Scholar
Vasey, G.M. & Zodrow, E.L., 1983. Environmental and correlative significance of a non-marine algal limestone (Westphalian D), Sydney Coalfield, Cape Breton Island, Nova Scotia. Maritime Sediments and Atlantic Geology 19: 110.Google Scholar
Wagner, R.H., 1974. The chronostratigraphic units of the Upper Carboniferous in Europe. Bulletin de la Société Belge de Géologie, de Paléontologie et d'Hydrologie 83: 235253.Google Scholar
Wagner, R.H., 1977. Comments on the upper Westphalian and Stephanian floras of Czechoslovakia, with particular reference to their stratigraphic age. In: Holub, V.M. & Wagner, R.H. (eds): Symposium on Carbononiferous Stratigraphy. Geological Survey (Prague): 441457.Google Scholar
Wagner, R.H., 1998. Consideraciones sobre los pisos de la Serie Estefaniense. Monografias de la Academia de Ciencias, Exactas Físicas, Químicas y Naturales de Zaragoza 13: 919.Google Scholar
Wagner, R.H., 2004. The Iberian Massif: a Carboniferous assembly. Journal of Iberian Geology 30: 93108.Google Scholar
Wagner, R.H. & Alvarez-Vázquez, C., 1991. Floral characterisation and biozones of the Westphalian D Stage in NW Spain. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 183: 171202.Google Scholar
Wagner, R.H., Fernandez-Garcia, L. & Eagar, R.M.C., 1983. Geology and palaeontology of the Guardo Coalfield (NE León - NW Palencia), Cantabrian Mts. Instituto Geologico y Minero de España (Madrid): 109 pp.Google Scholar
Wagner, R.H. & Lemos de Sousa, M.J., 1983. The Carboniferous megafloras of Portugal – a revision of identifications and discussion of stratigraphic ages. In: Lemos de Sousa, M.J. & Oliviera, J.T. (eds): The Carboniferous of Portugal. Memórias dos Serviços Geológicos de Portugal 29, 127152.Google Scholar
Wagner, R.H. & Lyons, P.C., 1997. A critical analysis of the higher Pennsylvanian megafloras of the Appalachian region. Review of Palaeobotany and Palynology 95, 255283.Google Scholar
Wagner, R.H. & Spinner, E., 1972. The stratigraphic implications of the Westphalian D macro- and microflora of the Forest of Dean Coalfield (Gloucestershire), England. Proceedings of the 24th International Geological Congress 7: 428437.Google Scholar
Wagner, R.H. & Winkler Prins, C.F., 1970. The stratigraphic succession, flora and fauna of Cantabrian and Stephanian A rocks at Barruelo (prov. Palencia), N.W. Spain. In: Streel, M. & Wagner, R.H. (eds): Colloque sur la stratigraphie du Carbonifère. Les Congrès et Colloque de l'Université de Liège 55: 487551.Google Scholar
Wagner, R.H. & Winkler Prins, C.F., 1979. The lower Stephanian of Western Europe. Palaeontological characteristics of the main subdivisions of the Carboniferous. Compte rendu 8e Congrès International de Stratigraphie et de Géologie du Carbonifère (Moscow, 1975) 3: 111140.Google Scholar
Wagner, R.H. & Winkler Prins, C.F., 1985. Stratotypes of the two lower Stephanian stages, Cantabrian and Barruelian. Compte rendu 10e Congrès International de Stratigraphie et de Géologie du Carbonifère (Madrid, 1983) 4: 473483.Google Scholar
Wagner, R.H. & Winkler Prins, C.F., 2002. Tectonics vs. cyclothems: Carboniferous sedimentation in the Cantabrian Mountains, Spain. In: Hill, L.V., Henderson, C.H. & Bamber, E.W. (eds): Carboniferous and Permian of the world, Proceedings of the XIV ICCP. Canadian Society of Petroleum Geologists Memoir 19: 228238.Google Scholar
Waksmundzka, M.I., 2005. Ewolucja facjalna i analiza sekwencji w paralicznych utworach karbonu z północno-zachodniej i centralnej Lubelszczyzny. Unpublished Ph.D. thesis. Polish Geological Institute, Warsaw.Google Scholar
Waksmundzka, M.I. & Ptak, B., 2006. Depositional environments and petrographical characteristics of the Namurian and Westphalian coals in the Lublin Carboniferous Basin, SE Poland. Abstracts, IGCP 469 – Late Variscan terrestrial biotas and palaeoenvironments (Kraków): 2529.Google Scholar
Walton, J., 1936. On the factors which influence the external form of fossil plants; with descriptions of the foliage of some species of the Palaeozoic equisetalean genus Annularia Sternberg. Philosophical Transactions of the Royal Society of London, Series B 226: 219237.Google Scholar
Ward, P., Labandeira, C., Laurin, M. & Berner, R.A., 2006. Confirmation of Romer's Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proceedings of the National Academy of Sciences of the United States of America 103: 1681816822.CrossRefGoogle ScholarPubMed
Warr, L.N., 2000. The Variscan Orogeny: the welding of Pangea. In: Woodcock, N. & Strahan, R. (eds): Geological history of Britain and Ireland. Oxford (Blackwell): 271294.Google Scholar
Wartmann, R., 1969. Studie über die papillen-förmigen Verdickungen auf der Kutikule bei Cordaites an Material aus dem Westfal C des Saar-Karbons. Argumenta Palaeobotanica 3: 199207.Google Scholar
Waters, C.N., Browne, M.A.E., Dean, M.T. & Powell, J.H., 2007. Lithostratigraphical framework for Carboniferous secessions in Great Britain (onshore). British Geological Survey Research Report RR/07/01: 160.Google Scholar
Waters, C.N. & Davies, S.J., 2006. Carboniferous: extensional basins, advancing deltas and coal swamps. In: Brenchley, P.J. & Rawson, P.F. (eds): The geology of England and Wales. London (The Geological Society): 173223.CrossRefGoogle Scholar
Waters, C.N., Waters, R.A., Barclay, W.J. & Davies, J.R., 2009. A lithostratigraphical framework for the Carboniferous successions of southern Great Britain (onshore). British Geological Survey Research Report RR/09/01: 1184.Google Scholar
Webb, T.J., Gaston, K.J., Hannah, L. & Woodward, F.I., 2006. Coincident scales of forest feedback on climate and conservation in a diversity hotspot. Proceedings ofthe Royal Society, London, Series B 273: 757765.Google Scholar
Weiss, C.E., 1884. Beitrage zur fossilen Flora. III Steinkohlen-Calamarien. II. Abhandlungen zur Geologische Spezialkarte von Preussen und den Thüringischen Staaten 5: 1203.Google Scholar
Weithofer, K.A., 1896. Die geologischen Verhältnisse des Bayer-Schachtes und benachbarten Teiles der Pilsner Kohlenmulde. Österreichische Zeitschrift für Berg- und Hüttenwesen 44(25-28): 317321, 331-335, 345-349, 355-357.Google Scholar
Weithofer, K.A., 1902. Geologische Skizze des Kladno-Rakonitzer Kohlenbeckens. Verhandlungen der Kaiserlich-Königlich Geologischen Reichsanstalt: 399420.Google Scholar
White, D. & Thiessen, R., 1913. The origin of coal. Bulletin of the U.S. Bureau of Mines 38: 1390.Google Scholar
White, J.C., Gibling, M.R. & Kalkreuth, W.D., 1994. The Backpit seam, Sydney Mines Formation, Nova Scotia: a record of peat accumulation and drowning in a Westphalian coastal mire. Palaeogeography, Palaeoclimatology, Palaeoecology 106: 223239.CrossRefGoogle Scholar
Wightman, W.G., Scott, D.B., Medioli, F.S. & Gibling, M.R., 1994. Agglutinated foraminifera and thecamoebians from the Late Carboniferous Sydney coalfield, Nova Scotia: paleoecology, paleoenvironments and paleogeo-graphical implications. Palaeogeography, Palaeoclimatology, Palaeoecology 106: 187202.CrossRefGoogle Scholar
Williamson, W.C., 1871. On the organization of Volkmannia dawsonii, an undescribed verticillate strobilus from the lower Coal Measures of Lancashire. Memoirs of the Manchester Literary and Philosophical Society 5: 2840.Google Scholar
Winchester, T.C., Pharaoh, T.C., Verniers, J., Ioane, D. & Seghedi, A., 2006. Palaeozoic accretion of Gondwana-derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. In: Gee, D.G. & Stephenson, R.A. (eds): European lithosphere dynamics. Geological Society, London, Memoirs 32: 323332.Google Scholar
Witzmann, F., Kahlert, E. & Schultka, S., (in press). Zur Makrofauna der Zwickau-Formation. Schriftenreihe Bergbau in Sachsen 15.Google Scholar
Wnuk, C. & Pfefferkorn, H.W., 1984. The life habits and paleoecology of Middle Pennsylvanian medullosan pteridosperms based on an in situ assemblage from the Bernice Basin (Sullivan County, Pennsylvania, U.S.A.). Review of Palaeobotany and Palynology 41: 329351.CrossRefGoogle Scholar
Woodland, A.W., Evans, W.B. & Stephens, J.V., 1957. Classification of the Coal Measures of South Wales with special reference to the Upper Coal Measures. Bulletin of the Geological Survey of Great Britain 13: 613.Google Scholar
Worssam, B.C., 1963. The stratigraphy of the Geological Survey Upton Borehole, Oxfordshire. Bulletin of the Geological Survey of Great Britain 20: 107162.Google Scholar
Wrede, V. & Ribbert, K.-H., 2005. Das Oberkarbon (Silesium) am Nordrand des rechtsrheinischen Schiefergebirges (Ruhrkarbon). In: Deutsche Stratigraphische Kommission (ed.): Stratigraphie von Deutschland – Das Oberkarbon (Pennsylvanium) in Deutschland. Courier Forschungsinstitut Senckenberg 254: 225254 Google Scholar
Wrede, V. & Zeller, M., 2005. Eifelnordrand, Aachen-Erkelenz und Untergrund der Niederrheinischen Bucht. In: Deutsche Stratigraphische Kommission (ed.): Stratigraphie von Deutschland – Das Oberkarbon (Pennsylvanium) in Deutschland. Courier Forschungsinstitut Senckenberg 254: 199224 Google Scholar
Zdanowski, A., 2007. Rozpoznanie złóż węgla kamiennego i boksytów w Lubelskim Zagłębiu Węglowym. Biuletyn Państwowego Instytutu Geologicznego 422: 3550.Google Scholar
Zdanowski, A. & Żakowa, H., 1995. The Carboniferous System in Poland. Prace Pañstwowego Instytutu Geologicznego 148: 1215.Google Scholar
Zeiller, R., 1894. Sur les subdivisions du Westphalien de la France d'après les caractères de la flore. Bulletin de la Société Géologique de France 22: 483.Google Scholar
Zherikhin, V.V., 2002. Ecological history of terrestrial insects. In: Rasnitsyn, A.P. & Quicke, D.L.J. (eds): History of insects. Kluwer (Dordrecht): 331388.Google Scholar
Ziegler, P.A., 1990. Geological atlas of western and central Europe. Shell (The Hague): 239 pp.Google Scholar
Ziegler, P.A. & Dézes, P., 2006. Crustal evolution of Western and Central Europe. In: Gee, D.G. & Stephenson, R.A. (eds): European lithosphere dynamics. Geological Society, London, Memoirs 32: 4356.Google Scholar
Ziegler, A.M., Hulver, M.I. & Rowley, D.B., 1997. Permian world topography and climate. In: Martini, I.P. (ed.): Late Glacial and post-Glacial environmental changes – Quarternary, Carboniferous-Permian and Proterozoic. Oxford University Press: 111146.Google Scholar
Zodrow, E.L., 1985. Odontopteris Brongniart in the Upper Carboniferous of Canada. Palaeontographica, Abteilung B 196: 79110.Google Scholar
Zodrow, E.L., 1989. Revision of Silesian sphenophyll biostratigraphy of Canada. Review of Palaeobotany and Palynology 58: 177195.CrossRefGoogle Scholar
Zodrow, E.L., 1991. A coal-sulfur model for Sydney Coalfield (Upper Carboniferous), Nova Scotia, Canada. Atlantic Geology 27: 127142.CrossRefGoogle Scholar
Zodrow, E.L., 2002. The ‘medullosalean forest’ at the Lloyd Cove Seam (Pennsylvanian, Sydney Coalfield, Nova Scotia, Canada). Atlantic Geology 38: 178195.Google Scholar
Zodrow, E.L., 2007. Reconstructed tree fern Alethopteris zeilleri (Carboniferous, Medullosales). International Journal of Coal Geology 69: 6889.CrossRefGoogle Scholar
Zodrow, E.L. & Cleal, C.J., 1985. Phyto- and chronostratigraphical correlations between the late Pennsylvanian Morien Group (Sydney, Nova Scotia) and the Silesian Pennant Measures (South Wales). Canadian Journal of Earth Sciences 22: 14651473.CrossRefGoogle Scholar
Zodrow, E.L. & Cleal, C.J., 1998. Revision of the pteridosperm foliage Alethopteris and Lonchopteridium (Upper Carboniferous), Sydney Coalfield, Nova Scotia, Canada. Palaeontographica, Abteilung B 247: 65122.Google Scholar
Zodrow, E.L. & McCandish, K., 1980. Upper Carboniferous fossil flora of Nova Scotia. Nova Scotia Museum (Halifax, N.S., Canada): 275 pp.Google Scholar
Zodrow, E.L., Šimunek, Z., Cleal, C.J., Bek, J. & Pšenička, J., 2006. Taxonomic revision of the Palaeozoic marattialean fern Acitheca Schimper. Review of Palaeobotany and Palynology 138: 239280.CrossRefGoogle Scholar
Zulauf, G., Dörr, W., Fiala, J., Kotková, J., Maluski, H. & Valverde-Vaquero, P., 2002a. Evidence for high-temperature diffusional creep preserved by rapid cooling of lower crust (North Bohemian shear zone, Czech Republic). Terra Nova 14: 343354.CrossRefGoogle Scholar
Zulauf, G., Bues, C., Dörr, W. & Vejnar, Z., 2002b. 10 km minimum throw along the West Bohemian shear zone: Evidence for dramatic crustal thickenning and high topography in the Bohemian Massif (European Variscides). International Journal of Earth Sciences 91: 850864.Google Scholar