Skip to main content Accessibility help
×
Home

Cretaceous δ13C stratigraphy and the age of dolichosaurs and early mosasaurs

  • L.L. Jacobs (a1), K. Ferguson (a1), M.J. Polcyn (a1) and C. Rennison (a1)

Abstract

Sediments in north-central Texas, ranging in age from >117 to 85 Ma, represent a variety of terrestrial and marine depositional settings. Isotopic analyses of wood fragments found throughout the section allow correlation to the standard secular marine δ13C curve because of characteristic peaks at the Aptian-Albian and Cenomanian-Turonian boundaries. Consistency of the north-central Texas δ13C curve with the marine standard facilitates correlation among non-marine and marine environments on a global scale. Radiometrically dated ammonite zones recognised in Texas provide calibration for the Cenomanian and Turonian portions of the section. Cenomanian and Turonian sediments in north-central Texas preserve the oldest (96 Ma) and the youngest (<85 Ma) well-documented Coniasaurus, a dolichosaur also known from the southern North Sea Basin during that interval. Haasiasaurus, the oldest known well-documented early mosasaur, is found at ‘Ein Yabrud, Israel (98 Ma), followed by other poorly dated Cenomanian taxa from the eastern Mediterranean region, and then by Dallasaurus turneri and Russellosaurus coheni in Texas (92 Ma) and Tethysaurus (90.5 Ma) in Morocco. Neither shifts in δ13C nor large-scale sea level change seem to have influenced dolichosaur or mosasaur evolution in substantial ways during the Cenomanian and Turonian stages.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Cretaceous δ13C stratigraphy and the age of dolichosaurs and early mosasaurs
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Cretaceous δ13C stratigraphy and the age of dolichosaurs and early mosasaurs
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Cretaceous δ13C stratigraphy and the age of dolichosaurs and early mosasaurs
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author. Email: jacobs@smu.edu

References

Hide All
Arthur, M.A., Dean, W.E. & Schlanger, S.O., 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2 In: Sundquist, E.T. & Broecker, W.S. (eds): The carbon cycle and atmospheric CO2: natural variations Archaean to present. American Geophysical Union, Geophysical Monograph 32: 504–529.
Averianov, A.O., 2001. The first find of a dolichosaur (Squamata, Dolichosauridae) in Central Asia. Paleontological Journal 35: 525–527.
Bardet, N., Pereda Suberbiola, X. & Jalil, N.-E., 2003. A new mosasauroid (Squamata) from the Late Cretaceous (Turonian) of Morocco. Compte Rendus Palevol 2: 607–616.
Bell, B.A., Murry, P.A. & Osten, L.W., 1982. Coniasaurus Owen, 1850 from North America. Journal of Paleontology 56: 520–524.
Bell, G.L. Jr. & Polcyn, M.J., 2005. Dallasaurus turneri, a new primitive mosasauroid from the Middle Turonian of Texas and comments on the phylogeny of Mosasauridae (Squamata). In: Schulp, A.S. & Jagt, J.W.M. (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 177–194.
Bell, G.L. Jr. & VonLoh, J.P., 1998. New records of Turonian mosasauroids from the western United States. In: Martin, J.E., Hogenson, J.W. & Benton, R.C. (eds): Partners preserving our past, planning our future. Dakoterra 5: 15–28.
Buchy, M.-C., Smith, K.T., Frey, E., Stinnesbeck, W., González González, A.H., Ifrim, C. López-Oliva, J.G. & Porras-Muzquis, H., 2005. Annotated catalogue of marine squamates (Reptilia) from the Upper Cretaceous of northeastern Mexico. In: Schulp, A.S. & Jagt, J.W.M., (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 195–205.
Caldwell, M.W., 1999. Description and phylogenetic relationships of a new species of Coniasaurus Owen, 1850 (Squamata). Journal of Vertebrate Paleontology 19: 438–455.
Caldwell, M.W. & Cooper, J.A., 1999. Redescription, palaeobiogeography and palaeoecology of Coniasaurus crassidens Owen, 1850 (Squamata) from the Lower Chalk (Cretaceous; Cenomanian) of SE England. Zoological Journal of the Linnean Society 127: 423–452.
Caldwell, M.W. & Dal Sasso, C., 2004. Soft-tissue preservation in a 95 million year old marine lizard: Form, function, and aquatic adaptation. Journal of Vertebrate Paleontology 24: 980–985.
Carroll, R.L. & DeBraga, M., 1992. Aigialosaurs: mid-Cretaceous varanoid lizards. Journal of Vertebrate Paleontology 12: 66–86.
Cavin, L. & Dutheil, D.B., 1999. A new Cenomanian ichthyofauna from southeastern Morocco and its relationships with other early Late Cretaceous Moroccan faunas. Geologie en Mijnbouw 78: 261–266.
Collins, J.G., 1997. Characteristics and origin of the Cedar Hill bentonite bed, lower Austin Chalk, Dallas County Vicinity. The University of Texas at Arlington, Texas: 102 pp. (unpubl. MSc thesis).
Craig, H., 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12: 133–149.
Dal Sasso, C. & Renesto, S., 1999. Aquatic varanoid reptiles from the Cenomanian (Upper Cretaceous) lithographic limestones of Lebanon. Rivista del Museo civico di Scienze naturali ‘E. Caffi’, Bergamo 20: 63–69.
Dalla Vecchia, F.M. & Venturini, S., 1999. The Middle Cenomanian Lagerstätte of al Nammoura (Kesrouâne Caza, N Lebanon). Rivista del Museo civico di Scienze naturali ‘Enrico Caffi’, Bergamo 20: 75–77.
Diedrich, C., 1997. Ein Dentale von Coniasaurus crassidens Owen (Varanoidea) aus dem Ober-Cenoman von Halle/Westf. (NW-Deutschland). Geologie und Paläontologie in Westfalen 47: 43–51.
Diedrich, C., 1999. Erster Nachweis von Dolichosaurus longicollis Owen (Varanoidea) aus dem Ober-Cenoman von Halle/Westf. (NW-Deutschland). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1999/6: 372–384.
Ettachfini, E.M. & Andreu, B., 2004. Le Cénomanien et le Turonien de la plateforme Préafricaine du Maroc. Cretaceous Research 25: 277–302.
Ferguson, K.M., Gregory, R.T. & Constantine, A., 1999. Lower Cretaceous (Aptian-Albian) secular changes in the oxygen and carbon isotope record from high paleolatitude, fluvial sediments, southeast Australia: comparisons to the marine record. In: Barrera, E. & Johnson, C.C. (eds): Evolution of the Cretaceous ocean-climate system. Geological Society of America, Special Paper 332: 59–72.
Gradstein, F.M., Agterberg, F.P., Ogg, J.G., Hardenbol, J., Van Veen, P., Thierry, J. & Huang, Z., 1995. A Triassic, Jurassic, and Cretaceous time scale. Society of Economic Paleontologists and Mineralogists, Special Publication 54: 95–126.
Gradstein, F.M. & Ogg, J.G., 2004. Geologic time scale 2004 - why, how, and where next! Lethaia 37: 175–181.
Gröcke, D.R., Hesselbo, S.P. & Jenkyns, H.C., 1999. Carbon-isotope composition of Lower Cretaceous fossil wood: ocean-atmosphere chemistry and relation to sea-level change. Geology 27: 155–158.
Haq, B.U., Hardenbol, J. & Vail, P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Wilgus, C.K., Hastings, B.S., Posamentier, H., van Wagoner, J., Ross, C.A. & Kendall, C.G. St. C. (eds): Sea-level changes: an integrated approach. Society of Economic Paleontologists and Mineralogists, Special Publication 42: 71–108.
Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, Th., Graciansky, P.-C. de & Vail, P.R., 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: Graciansky, P.-C. de, Hardenbol, J., Jacquin, T. & Vail, P.R. (eds): Mesozoic and Cenozoic sequence stratigraphy of European basins. Society of Economic Paleontologists and Mineralogists, Special Publication 60: 3–13, 763–782.
Hardenbol, J. & Robaszynski, F., 1998. Introduction to the Upper Cretaceous. In: Graciansky, P.-C., Hardenbol, J., Jacquin, T. & Vail, P.R. (eds): Mesozoic and Cenozoic sequence stratigraphy of European basins. Society of Economic Paleontologists and Mineralogists, Special Publication 60: 329–332.
Hasegawa, T., Pratt, L.M., Maeda, H., Shigeta, Y., Okamoto, T., Kase, T. & Uemura, K., 2003. Upper Cretaceous stable carbon isotope stratigraphy of terrestrial organic matter from Sakhalin, Russian Far East: a proxy for the isotopic composition of paleoatmospheric CO2 . Palaeogeography, Palaeoclimatology, Palaeoecology 189: 97–115.
Hückel, U., 1970. Die Fischschiefer von Haqel und Hjoula in der Oberkreide des Libanon. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 135: 113–149.
Jacobs, L.L., Polcyn, M.J., Taylor, L.H. & Ferguson, K., 2005. Sea-surface temperatures and palaeoenvironments of dolichosaurs and early mosasaurs. In: Schulp, A.S. & Jagt, J.W.M., (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 269–281.
Jacobs, L.L. & Winkler, D.A., 1998. Mammals, archosaurs, and the Early to Late Cretaceous transition in north-central Texas. In: Tomida, Y., Flynn, L.J. & Jacobs, L.L. (eds): Advances in vertebrate paleontology and geochronology. National Science Museum Tokyo, Monographs 14: 253–280.
Jacquin, T. & De Graciansky, P.-C., 1998. Major transgressive/regressive cycles: the stratigraphic signature of European Basin development. In: Graciansky, P.-C., Hardenbol, J., Jacquin, T. & Vail, P.R. (eds): Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. Society of Economic Paleontologists and Mineralogists, Special Publication 60: 15–29.
Jenkyns, H.C., Gale, A.S. & Corfield, R.M., 1994. Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine 131: 1–34.
Keller, G., Berner, Z., Adatte, T. & Stueben, D., 2004. Cenomanian-Turonian and δ13C, and δ180, sea level and salinity variations at Pueblo, Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology 211: 19–43.
Kennedy, W.J., 1988. Late Cenomanian and Turonian ammonite faunas from north-east and central Texas. Special Papers in Palaeontology 39: 1–131.
Kennedy, W.J. & Cobban, W.A., 1990. Cenomanian ammonite faunas from the Woodbine Formation and lower part of the Eagle Ford Group, Texas. Palaeontology 33: 75–154.
Lewy, Z., 1989. Correlation of lithostratigraphic units in the upper Judea Group (Late Cenomanian-Late Coniacian) in Israel. Israel Journal of Earth Science 38: 37–43.
Lewy, Z., 1990. Transgressions, regressions and relative sea level changes on the Cretaceous shelf of Israel and adjacent countries. A critical evaluation of Cretaceous global sea level correlations. Paleoceanography 5: 619–637.
Lewy, Z. & Avni, Y., 1988. Omission surfaces in the Judea Group, Makhtesh Ramon region, southern Israel, and their paleogeographic significance. Israel Journal of Earth Science 37: 105–113.
Lewy, Z. & Raab, M., 1978. Mid-Cretaceous stratigraphy of the Middle East. Annales du Muséum d’Histoire naturelle de Nice 4(1976): 1–21.
Obradovich, J.D., 1994. A Cretaceous time scale. In: Caldwell, W.G.E. & Kauffmann, E.G. (eds): Evolution of the Western Interior Basin. Geological Society of Canada, Special Paper 39: 379–396.
Polcyn, M.J. & Bell, G.L., 2005. Russellosaurus coheni n. gen., n. sp., a 92 million-year-old mosasaur from Texas (USA), and the definition of the parafamily Russellosaurina. In: Schulp, A.S. & Jagt, J.W.M., (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 321–333.
Polcyn, M.J., Tchernov, E. & Jacobs, L.L., 1999. The Cretaceous biogeography of the eastern Mediterranean with a description of a new basal mosasauroid from ‘Ein Yabrud, Israel. In: Tomida, Y., Rich, T.H. & Vickers-Rich, P. (eds): Proceedings of the Second Gondwanan Dinosaur Symposium. National Science Museum Tokyo, Monographs 15: 259–290.
Polcyn, M.J., Tchernov, E. & Jacobs, L.L., 2003. Haasiasaurus gen. nov., a new generic name for the basal mosasauroid Haasia Polcyn et al., 1999. Journal of Vertebrate Paleontology 23: 476.
Rage, J.-C., 1989. Le plus ancien lézard varanoïde de France. Bulletin de la Société d’Étude et des Sciences d’Anjou 13: 19–26.
Reid, W.T., 1952. Clastic limestone in the upper Eagle Ford Shale, Dallas County, Texas. Field and Laboratory 20: 111–122.
Rennison, C.J., 1996. The stable carbon isotope record derived from mid-Cretaceous terrestrial plant fossils from north-central Texas. Southern Methodist University, Dallas, Texas: 120 pp. (unpubl. MSc thesis).
Robaszynski, F., Gale, A., Juignet, P., Amėdro, F. & Hardenbol, J., 1998. Sequence stratigraphy in the Upper Cretaceous Series of the Anglo-Paris Basin: Exemplified by the Cenomanian stage. In: Graciansky, P.-C., Hardenbol, J., Jacquin, T. & Vail, P.R. (eds): Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. Society of Economic Paleontologists and Mineralogists, Special Publication 60: 363–386.
Robinson, S.A. & Hesselbo, S.P., 2004. Fossil-wood carbon-isotope stratigraphy of the non-marine Wealden Group (Lower Cretaceous, southern England). Journal of the Geological Society, London 161: 133–145.
Saint-Marc, P., 1975. Étude stratigraphique et micropaléontologique de l’Albien, du Cénomanien et du Turonien du Liban. Notes et Mémoires sur le Moyen-Orient 8: 8–342.
VonLoh, J.P. & Bell, G.L. Jr., 1998. Fossil reptiles from the Late Cretaceous Greenhorn Formation (Late Cenomanian-Middle Turonian) of the Black Hills region, South Dakota. In: Martin, J.E., Hogenson, J.W. & Benton, R.C. (eds): Partners preserving our past, planning our future. Dakoterra 5: 29–38.

Keywords

Cretaceous δ13C stratigraphy and the age of dolichosaurs and early mosasaurs

  • L.L. Jacobs (a1), K. Ferguson (a1), M.J. Polcyn (a1) and C. Rennison (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed