Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-24T06:05:03.105Z Has data issue: false hasContentIssue false

Siegel domains over self-dual cones and their automorphisms

Published online by Cambridge University Press:  22 January 2016

Tadashi Tsuji*
Affiliation:
Mie University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Lie algebra gr of all infinitesimal automorphisms of a Siegel domain in terms of polynomial vector fields was investigated by Kaup, Matsushima and Ochiai [6]. It was proved in [6] that gr is a graded Lie algebra; gr = g-1 + g-1/2 + g0 + g1/2 + g1 and the Lie subalgebra ga of all infinitesimal affine automorphisms is given by the graded subalgebra; ga = g-1 + g-1/2 + g0. Nakajima [9] proved without the assumption of homogeneity that the non-affine parts g1/2 and g1 can be determined from the affine part ga.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1974

References

[1] Borel, A., Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 11471151.Google Scholar
[2] Helgason, S., Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.Google Scholar
[3] Kaneyuki, S., On the automorphism groups of homogeneous bounded domains, J. Fac. Sci. Univ. Tokyo, 14 (1967), 89130.Google Scholar
[4] Kaneyuki, S. and Sudo, M., On Silov boundaries of Siegel domains, J. Fac. Sci. Univ. Tokyo, 15 (1968), 131146.Google Scholar
[5] Kaneyuki, S. and Tsuji, T., Classification of homogeneous bounded domains of lower dimension, (to appear in Nagoya Math. J., 53).Google Scholar
[6] Kaup, W., Matsushima, Y. and Ochiai, T., On the automorphisms and equivalences of generalized Siegel domains, Amer. J. Math., 92 (1970), 475498.Google Scholar
[7] Koszul, J. L., Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math., 7 (1955), 562576.CrossRefGoogle Scholar
[8] Murakami, S., On Automorphisms of Siegel Domains, Lecture Notes in Math., 286, Springer, 1972.CrossRefGoogle Scholar
[9] Nakajima, K., Some studies on Siegel domains, (preprint).Google Scholar
[10] Pjateckii-Sapiro, I. I., Géométrie des Domaines Classiques et Théorie des Fonctions Automorphes, French translation, Dunod, Paris, 1966.Google Scholar
[11] Rothaus, 0. S., Domains of positivity, Abh. Math. Sem. Univ. Hamburg, 24 (1960), 189235.Google Scholar
[12] Sudo, M., On infinitesimal automorphisms of Siegel domains over classical cones, (preprint).Google Scholar
[13] Takeuchi, M., On infinitesimal affine automorphisms of Siegel domains, Proc. Japan Acad., 45 (1969), 590594.Google Scholar
[14] Tanaka, N., On infinitesimal automorphisms of Siegel domains, J. Math. Soc. Japan, 22 (1970), 180212.Google Scholar
[15] Tsuji, T., On infinitesimal automorphisms and homogeneous Siegel domains over circular cones, Proc. Japan Acad., 49 (1973), 390393.Google Scholar
[16] Tsuji, T., Classification of homogeneous Siegel domains of type II of dimensions 9 and 10, Proc. Japan Acad., 49 (1973), 394396.Google Scholar
[17] Vinberg, E. B., The structure of the group of automorphisms of a homogeneous convex cone, Trans. Moscow Math. Soc, 13 (1965), 6393.Google Scholar
[18] Nakajima, K., Symmetric spaces associated with Siegel domains, (preprint).Google Scholar