Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-26T02:54:13.351Z Has data issue: false hasContentIssue false

q-Titchmarsh-Weyl theory: series expansion

Published online by Cambridge University Press:  11 January 2016

M. H. Annaby
Affiliation:
Department of Mathematics, and statistics and Physics Qatar University, Doha Qatarmannaby@qu.edu.qa
Z. S. Mansour
Affiliation:
Department of Mathematics King Saudi University, Riyadh Riyadh 11451, Kingdom of Saudi Arabiazeinabs98@hotmail.com
I. A. Soliman
Affiliation:
Department of Mathematics Cairo University, Giza Egypteman.a.raouf@hotmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We establish a q-Titchmarsh-Weyl theory for singular q-Sturm-Liouville problems. We define q-limit-point and q-limit circle singularities, and we give sufficient conditions which guarantee that the singular point is in a limit-point case. The resolvent is constructed in terms of Green’s function of the problem. We derive the eigenfunction expansion in its series form. A detailed worked example involving Jackson q-Bessel functions is given. This example leads to the completeness of a wide class of q-cylindrical functions.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2012

References

[1] Abreu, L. D., A q-sampling theorem related to the q-Hankel transform, Proc. Amer. Math. Soc. 133 (2004), 11971203.Google Scholar
[2] Abreu, L. D., Functions q-orthogonal with respect to their own zeros, Proc. Amer. Math. Soc. 134 (2006), 26952701.CrossRefGoogle Scholar
[3] Abreu, L. D. and Bustoz, J., “On the completeness of sets of q-Bessel functions” in Theory and Applications of Special Functions, Dev. Math. 13, Springer, New York, 2005, 2938.CrossRefGoogle Scholar
[4] Abreu, L. D, Bustoz J., and Caradoso, J. L., The roots of the third Jackson q-Bessel functions, Int. J. Math. Math. Sci. 67 (2003), 42414248.CrossRefGoogle Scholar
[5] Abu-Risha, M. H., Annaby, M. H., Ismail, M. E. H., and Mansour, Z. S., Linear q-difference equations, Z. Anal. Anwend. 26 (2007), 481494.Google Scholar
[6] Ahlfors, L., Complex Analysis, Cambridge University Press, Cambridge, 1999.Google Scholar
[7] Andrews, G. E., Askey, R., and Roy, R., Special Functions, Cambridge University Press, Cambridge, 1999.Google Scholar
[8] Annaby, M. H., q-Type sampling theorems, Results Math. 44 (2003), 214225.Google Scholar
[9] Annaby, M. H. and Mansour, Z. S., Basic Sturm-Liouville problems, J. Phys. A 38 (2005), 37753797; Correction, J. Phys. A 39 (2006), 8747.Google Scholar
[10] Annaby, M. H. and Mansour, Z. S., On the zeros of basic finite Hankel transforms, J. Math. Anal. Appl. 323 (2006), 10911103.Google Scholar
[11] Annaby, M. H and Mansour, Z. S., On the zeros of the second and third Jackson q-Bessel functions and their associated q-Hankel transforms, Math. Proc. Cambridge Philos. Soc. 147 (2009), 4767.Google Scholar
[12] Annaby, M. H and Mansour, Z. S., Asymptotic formulae for eigenvalues and eigenfunctions of q-Sturm-Liouville problems, Math. Nachr. 284 (2011), 443470.Google Scholar
[13] Berezanskii, J. M., Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc, Providence, 1968.Google Scholar
[14] Brown, B. M., Christiansen, J. S., and Schmidt, K. M., Spectral properties of a q-Sturm-Liouville operator, Comm. Math. Phys. 287 (2009), 259274.Google Scholar
[15] Brown, B. M., Evans, W. D., and Ismail M. E. H., The Askey-Wilson polynomials and q-Sturm-Liouville problems, Math. Proc. Cambridge Philos. Soc. 119 (1996), 116.CrossRefGoogle Scholar
[16] Bustoz, J. and Cardoso, J. L., Basic analog of Fourier series on a q-linear grid, J. Approx. Theory 112 (2001), 134157.Google Scholar
[17] Bustoz, J. and Suslov, S. K., Basic analog of Fourier series on a q-quadratic grid, Methods Appl. Anal. 5 (1998), 138.CrossRefGoogle Scholar
[18] Carmichael, R. D., The general theory of linear q-difference equations, Amer. J. Math. 34 (1912), 147168.CrossRefGoogle Scholar
[19] Carmichael, R. D., Linear difference equations and their analytic solutions, Trans. Amer. Math. Soc. 12, no. 1 (1911), 99134.CrossRefGoogle Scholar
[20] Carmichael, R. D., On the theory of linear difference equations, Amer. J. Math. 35 (1913), 163182.Google Scholar
[21] Christiansen, J. S. and Ismail, M. E. H., A moment problem and a family of integral evaluations, Trans. Amer. Math. Soc. 358, no. 9 (2006), 40714097.Google Scholar
[22] Conway, R., Functions in One Complex Variable, Springer, New York, 1999.Google Scholar
[23] Fulton, C. T., Parametrizations of Titchmarsh’s m(λ)-functions in the limit circle case, Trans. Amer. Math. Soc. 229 (1977), 5163.Google Scholar
[24] Hahn, W., Beiträge zur Theorie der Heineschen Reihen, Math. Nachr. 2 (1949), 340379.Google Scholar
[25] Hajmirzaahmad, M. and Krall, A. M., Singular second-order operators: the maximal and minimal operators, and selfadjoint operators in between, SIAM Rev. 34 (1992), 614634.Google Scholar
[26] Ismail, M. E. H., The zeros of basic Bessel functions, the functions Jv+ax(x) and associated orthogonal polynomials, J. Math. Anal. Appl. 86 (1982), 119.Google Scholar
[27] Ismail, M. E. H., Classical and Quantum Orthogonal Polynomials in One Variable, Encyclo pedia Math. Appl. 98, Cambridge University Press, Cambridge, 2005.Google Scholar
[28] Ismail, M. E. H., On Jackson’s third q-Bessel function, preprint, 1996.Google Scholar
[29] Jackson, F. H., The applications of basic numbers to Bessel’s and Legendre’s equations, Proc. Lond. Math. Soc. (3) 2 (1905), 192220.Google Scholar
[30] Jackson, F. H., On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193203.Google Scholar
[31] Koelink, H. T. and Swarttouw, R. F., On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials, J. Math. Anal. Appl. 186 (1994), 690710.Google Scholar
[32] Koornwinder, T. H. and Swarttouw, R. F., On a q-analog of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333 (1992), no. 1, 445461.Google Scholar
[33] Lang, S., Complex Analysis, Springer, New York, 1992.Google Scholar
[34] Lavagno, A., Basic-deformed quantum mechanics, Rep. Math. Phys. 64 (2009), 7991.Google Scholar
[35] Levinson, N., A simplified proof of the expansion theorem for singular second order linear differential equations, Duke Math. J. 18 (1951), 5771.Google Scholar
[36] Levitan, B. M. and Sargsjan, I. S., Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators, Amer. Math. Soc, Providence, 1975.Google Scholar
[37] Levitan, B. M. and Sargsjan, I. S., Sturm Liouville and Dirac Operators, Kluwer, Dordrecht, 1991.CrossRefGoogle Scholar
[38] Matsuo, A., Jackson integrals of Jordan-Pochhammer type and quantum Knizhnik-Zamolodchikov equations, Comm. Math. Phys. 151 (1993), 263273.Google Scholar
[39] Naimark, M. A., Linear Differential Operators, Part II: Lineal Differential Operators in Hilbert Space, Frederick Ungar, New York, 1968.Google Scholar
[40] Stone, M. H., A comparison of the series of Fourier and Birkhoff, Trans. Amer. Math. Soc. 28 (1926), 695761.Google Scholar
[41] Stone, M. H., Linear Transformations in Hilbert Space and Their Application to Analysis, Amer. Math. Soc, Providence, 1932.Google Scholar
[42] Suslov, S. K., Some expansions in basic Fourier series and related topics, J. Approx. Theory 115 (2002), 289353.Google Scholar
[43] Suslov, S. K., An Introduction to Basic Fourier Series, Kluwer Ser. Dev. Math. 9, Kluwer Academic, Dordrecht, 2003.Google Scholar
[44] Swarttouw, R. F., The Hahn-Exton q-Bessel function, Ph.D. dissertation, Technical University of Delft, Delft, Netherlands, 1992.Google Scholar
[45] Swarttouw, R. F. and Meijer, H. G., A q-analogue of the Wronskian and a second solution of the Hahn-Exton q-Bessel difference equation, Proc. Amer. Math. Soc. 120 (1994), 855864.Google Scholar
[46] Titchmarsh, E. C., On the uniqueness of the Green’s function associated with a second-order differential equation, Canad. J. Math. 1 (1949), 191198.Google Scholar
[47] Titchmarsh, E. C., Eigenfunction Expansions Associated with Second-Order Differential Equations, I, 2nd ed., Clarendon Press, Oxford, 1962.Google Scholar
[48] Weyl, H., Gewöhnliche linear differentialgleichungen mit singularitäten stellen und ihre eigenfunktionen, Göttingen Ges. Wiss. Nach. 68 (1909), 7364.Google Scholar
[49] Weyl, H., Gewöhnliche linear differentialgleichungen mit singularitäten stellen und ihre eigenfunktionen, Göttingen Ges. Wiss. Nach. 68 (1910), 442467.Google Scholar
[50] Weyl, H., Über Gewöhnliche differentialgleichungen mit singularitäten und die zugehörigen entwicklung willkürlicher funktionen, Math. Ann. 68 (1910), 220269.Google Scholar
[51] Yosida, K., On Titchmarsh-Kodaira’s formula concerning Weyl-Stone’s eingenfunction expansion, Nagoya Math. J. 1 (1950), 4958.CrossRefGoogle Scholar
[52] Yosida, K., Lectures on Differential and Integral Equations, Springer, New York, 1960.Google Scholar