Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T10:29:18.307Z Has data issue: false hasContentIssue false

NORMAL AND IRREDUCIBLE ADIC SPACES, THE OPENNESS OF FINITE MORPHISMS, AND A STEIN FACTORIZATION

Published online by Cambridge University Press:  16 December 2022

LUCAS MANN*
Affiliation:
Mathematisches Institut Westfälische Wilhelms-Universität Münster Einsteinstraße 62 48149 Münster Germany

Abstract

We transfer several elementary geometric properties of rigid-analytic spaces to the world of adic spaces, more precisely to the category of adic spaces which are locally of (weakly) finite type over a non-archimedean field. This includes normality, irreducibility (in particular, irreducible components), and a Stein factorization theorem. Most notably, we show that a finite morphism in our category of adic spaces is automatically open if the target is normal and both source and target are of the same pure dimension. Moreover, our version of the Stein factorization theorem includes a statement about the geometric connectedness of fibers which we have not found in the literature of rigid-analytic or Berkovich spaces.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berkovich, V., Spectral Theory and Analytic Geometry over Non-Archimedean Fields, American Mathematical Society, Providence, RI, 1990.Google Scholar
Bosch, S., Güntzer, U., and Remmert, R., Non-Archimedean Analysis, Grundlehren Math. Wiss. 261, Springer, Berlin, 1984. A systematic approach to rigid analytic geometry.CrossRefGoogle Scholar
Conrad, B., Irreducible components of rigid spaces , Ann. Inst. Fourier 49 (1999), 473541.CrossRefGoogle Scholar
Huber, R., Bewertungsspektrum Und Rigide Geometrie, Regensburger Math. Schr. 23, Fakultät Math. Univ. Regensburg, Regensburg, 1993.Google Scholar
Huber, R., Continuous valuations , Math. Z. 212 (1993), 455478.CrossRefGoogle Scholar
Huber, R., A generalization of formal schemes and rigid analytic varieties , Math. Z. 217 (1994), 513551.CrossRefGoogle Scholar
Huber, R., Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects Math. 30, Vieweg+Teubner, Wiesbaden, 1996.CrossRefGoogle Scholar
Huber, R. and Knebusch, M., On valuation spectra , Contemp. Math. 155 (1994), 167206.CrossRefGoogle Scholar
Kedlaya, K. S. and Liu, R., Relative p-Adic Hodge Theory: Foundations, Astérisque 371, Soc. Math. France, Montrouge, 2015, 239 pp.Google Scholar
Kedlaya, K. S. and Liu, R., Relative p-adic Hodge theory, II: Imperfect period rings, preprint, arxiv:1602.06899 Google Scholar
Kiehl, R., Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie , Invent. Math. 2 (1966), 191214.CrossRefGoogle Scholar
Kiehl, R., Ausgezeichnete Ringe in der nichtarchimedischen analytischen Geometrie , J. Reine Angew. Math. 234 (1969), 8998.Google Scholar
Lourenço, J. N. P., The Riemannian Hebbarkeitssätze for pseudorigid spaces, preprint, arxiv:1711.06903 Google Scholar
Mann, L. and Werner, A., Local systems on diamonds and p-adic vector bundles , Int. Math. Res. Not. IMRN (2022).CrossRefGoogle Scholar
Scholze, P., Lectures on Analytic Geometry, 2020. https://www.math.uni-bonn.de/people/scholze/Analytic.pdf.Google Scholar
The Stacks Project Authors. Stacks Project (2018). http://stacks.math.columbia.edu.Google Scholar