Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T04:26:43.994Z Has data issue: false hasContentIssue false

A Noether-Lefschetz theorem for varieties of r-planes in complete intersections

Published online by Cambridge University Press:  11 January 2016

Zhi Jiang*
Affiliation:
Mathématiques Bâtiment 425 Université Paris-Sud, F-91405 Orsay, France, zhi.jiang@math.u-psud.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove a Noether-Lefschetz type theorem for varieties of r-planes in complete intersections. We then use it to study the Abel-Jacobi map of planes on a smooth cubic fivefold.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2012

References

[AK] Altman, A. B. and Kleiman, S. L., Foundations of the theory of Fano schemes, Compos. Math. 34 (1977), 347.Google Scholar
[BVV] Barth, W. and de Ven, A. Van, Fano varieties of lines on hypersurfaces, Arch. Math. (Basel) 31 (1978), 96104.CrossRefGoogle Scholar
[BD] Beauville, A. and Donagi, R., La variété des droites d’une hypersurface cubique de dimension 4, C. R. Math. Acad. Sci. Paris 301 (1985), 703706.Google Scholar
[BM] Bloch, S. and Murre, J. P., On the Chow groups of certain types of Fano threefolds, Compos. Math. 39 (1979), 47105.Google Scholar
[BV] Bonavero, L. and Voisin, C., Fano schemes and Moishezon manifolds (in French), C. R. Math. Acad. Sci. Paris 323 (1996), 10191024.Google Scholar
[B1] Borcea, C., Deforming varieties of k-planes of projective complete intersections, Pacific J. Math. 143 (1990), 2536.CrossRefGoogle Scholar
[B2] Borcea, C., “Homogeneous vector bundles and families of Calabi-Yau threefolds, II” in Several Complex Variables and Complex Geometry (Santa Cruz, 1989), Proc. Sympos. Pure Math. 52, Part 2, Amer. Math. Soc., Providence, 1991, 8391.CrossRefGoogle Scholar
[Bot] Bott, R., Homogeneous vector bundles, Ann. of Math. (2) 66 (1975), 203248.CrossRefGoogle Scholar
[CG] Clemens, C. H. and Griffiths, P. A., The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281356.CrossRefGoogle Scholar
[DM] Debarre, O. and Manivel, L., Sur la variété des espaces linéaires contenus dans une intersection complète, Math. Ann. 312 (1998), 549574.CrossRefGoogle Scholar
[DR] Dimitrov, I. and Roth, M., Cup products of line bundles on homogeneous varieties and generalized PRV components of multiplicity one, preprint, arXiv:0909.2280v1 [math.AG] Google Scholar
[ELV] Esnault, H., Levine, M., and Viehweg, E., Chow groups of projective varieties of very small degree, Duke Math. J. 87 (1997), 2958.CrossRefGoogle Scholar
[IM] Iliev, A. and Manivel, L., Cubic hypersurfaces and integrable systems, Amer. J. Math. 130 (2008), 14451475.CrossRefGoogle Scholar
[J] Jiang, Z., On the restriction of holomorphic forms, Manuscripta Math. 124 (2007), 173182.CrossRefGoogle Scholar
[LM] Landsberg, J. M. and Manivel, L., On the projective geometry of rational homogeneous varieties, Comment. Math. Helv. 78 (2003), 65100.CrossRefGoogle Scholar
[PS] Peters, C. and Steenbrink, J., Mixed Hodge Structures, Ergeb. Math. Grenzgeb. (3) 52, Springer, Berlin, 2008.Google Scholar
[P] Pirola, G. P., Base number theorem for abelian varieties: An infinitesimal approach, Math. Ann. 282 (1988), 361368.CrossRefGoogle Scholar
[Re] Reid, M., The complete intersection of two or more quadrics, Ph.D. dissertation, University of Cambridge, Cambridge, England, 1972.Google Scholar
[Ro] Roulleau, X., Elliptic curve configurations on Fano surfaces, Manuscripta Math. 129 (2009), 381399.CrossRefGoogle Scholar
[S] Spandaw, J., Noether-Lefschetz Problems for Degeneracy Loci, Mem. Amer. Math. Soc. 161 (2003), no. 764.Google Scholar
[W] Weyman, J., Cohomology of Vector Bundles and Syzygies, Cambridge Tracts in Math. 149, Cambridge University Press, Cambridge, 2003.Google Scholar
[V1] Voisin, C., Hodge Theory and Complex Algebraic Geometry, II, Cambridge Stud. Adv. Math. 77, Cambridge University Press, Cambridge, 2003.Google Scholar
[V2] Voisin, C., Coniveau 2 complete intersections and effective cones, Geom. Funct. Anal. 19 (2010), 14941513.CrossRefGoogle Scholar