Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-30T16:32:22.420Z Has data issue: false hasContentIssue false

The Filtered Poincaré Lemma in Higher Level (With Applications to Algebraic Groups)

Published online by Cambridge University Press:  11 January 2016

Bernard Le Stum
Affiliation:
IRMAR, Université de Rennes I, Campus de Beaulieu, F-35042 Rennes Cedex, France, bernard.le-stum@univ-rennes1.fr
Adolfo Quirós
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, E-28049 Madrid, Spain,adolfo.quiros@uam.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that the Poincaré lemma we proved elsewhere in the context of crystalline cohomology of higher level behaves well with regard to the Hodge filtration. This allows us to prove the Poincaré lemma for transversal crystals of level m. We interpret the de Rham complex in terms of what we call the Berthelot-Lieberman construction and show how the same construction can be used to study the conormal complex and invariant differential forms of higher level for a group scheme. Bringing together both instances of the construction, we show that crystalline extensions of transversal crystals by algebraic groups can be computed by reduction to the filtered de Rham complexes. Our theory does not ignore torsion and, unlike in the classical case (m = 0), not all invariant forms are closed. Therefore, close invariant differential forms of level m provide new invariants and we exhibit some examples as applications.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2008

References

[1] Berthelot, P., Cohomologie crystalline des schémas de caractéristique p > 0, Lecture Notes in Mathematics, vol. 407, Springer-Verlag, Berlin, 1974.Google Scholar
[2] Berthelot, P., D-modules arithmétiques I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4), 29 (1996), 185272.Google Scholar
[3] Berthelot, P., Breen, L. and Messing, W., Théorie de Dieudonné crystalline II, Lecture Notes in Mathematics, vol. 930, Springer-Verlag, Berlin, 1982.Google Scholar
[4] Berthelot, P. and Ogus, A., Notes on crystalline cohomology, Princeton University Press, 1978.Google Scholar
[5] Crew, R., Crystalline cohomology of singular varieties, Geometric aspects of Dwork theory. Vol. I, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 451462.Google Scholar
[6] Deligne, P., Théorie de Hodge II, Inst. Hautes Études Sci. Publ. Math., (40) (1971), 557.CrossRefGoogle Scholar
[7] Étesse, J.-Y. and Le Stum, B., Fonctions L associées aux F-isocristaux surconvergents. II. Zéros et pôles unités, Invent. Math., 127 (1997), 131.Google Scholar
[8] Illusie, L., Complexe cotangent et déformations I, Lecture Notes in Mathematics, vol. 239, Springer-Verlag, Berlin, 1971.Google Scholar
[9] Le Stum, B. and Quirós, A., Transversal crystals offinite level, Ann. Inst. Fourier, 47 (1997), 69100.Google Scholar
[10] Le Stum, B. and Quirós, A., The exact Poincaré lemma in crystalline cohomology of higher level, J. Algebra, 240 (2001), 559588.Google Scholar
[11] Ogus, A., F-crystals, Griffiths transversality, and the Hodge decomposition, Astérisque, 221 (1994).Google Scholar
[12] Silverman, J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986.Google Scholar
[13] Trihan, F., Fonction L unité d’un groupe de Barsotti-Tate, Manuscripta Math., 96 (1998), 397419.Google Scholar