Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T09:55:41.645Z Has data issue: false hasContentIssue false

Adhesion of conidia and germlings of the plant pathogenic fungus Bipolaris sorokiniana to solid surfaces

Published online by Cambridge University Press:  28 November 2001

Dace Apoga
Affiliation:
Department of Microbial Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden. E-mail: anders.tunlid@mbioekol.lu.se
Hans-Börje Jansson
Affiliation:
Department of Microbial Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden. E-mail: anders.tunlid@mbioekol.lu.se
Andres Tunlid*
Affiliation:
Department of Microbial Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden. E-mail: anders.tunlid@mbioekol.lu.se
*
*Corresponding author
Get access

Abstract

Soon after coming in contact with its host, the plant pathogenic fungus Bipolaris sorokiniana produces an extracellular material that appears to be important for adhering conidia and germlings to the host surface. To further understand this step of the infection, the adhesion of B. sorokiniana to artificial solid surfaces was examined. On a hydrophobic (polystyrene) surface adhesion occurred in two stages, the first by conidia and the second by germlings. Conidial adhesion occurred shortly (0–1 h) after hydration. The conidia were easily detached by increasing the shear force and including detergents in the washing buffer. As conidia were hydrophobic, these observations indicate that conidial adhesion to polystyrene is due to weak, hydrophobic interaction. The second stage of adhesion was accompanied by conidial germination and occurred 1–2 h after hydration and contact with the surface. Concomitant with the delayed adhesion, the fungus produced an extracellular matrix (ECM). The adhesion of germlings was firm and surface-unspecific since they adhered to both hydrophobic and hydrophilic (glass) surfaces. Except for strong bases, hydrochloric acid and broad-specificity proteases (including Pronase E), none of the hydrolytic enzymes, electrolyte solutions, ionic and hydrophobic detergents and organic solvents removed germlings from the solid surfaces. The adhesion of germlings incubated in the presence of the protein glycosylation inhibitor tunicamycin or the lectins Con A (Concanavalin A) and GNA (from Galanthus nivalis) was significantly reduced, which indicates the involvement of surface glycoproteins in this process. The surface proteins of germlings were labelled with 125I, extracted and analysed by two-dimensional gel electrophoresis. This revealed about 40 surface proteins over a wide pH range (4–10) with molecular masses between 10 and 100 kDa.

Type
Research Article
Copyright
Copyright © The British Mycological Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)