Skip to main content Accessibility help

Zirconia – A Ceramic for Excess weapons Plutonium Wastes

  • W. L. Gong (a1), W. Lutze (a1) and R. C. Ewing (a2)


We synthesized a ceramic containing simulated excess weapons plutonium waste in solidsolution with zirconia (ZrO2)ss. ZrO2 has a large solubility for other metal oxides. More thantwenty binary systems AxOy- ZrO2 have been reported in the literature, including PuG2, rare earth elements, and oxides of metals contained in weapons plutonium wastes. We show that significant amounts of gadolinium (neutron absorber) and yttrium (stabilizer of the cubic modification) can be dissolved in ZrO2, together with plutonium (simulated by Th4+, Ce4+, or U4+) and impurities (e.g., Ca Mg, Fe, Si). Sol-gel and powder methods were applied to make homogeneous, single phase zirconia solid solutions. Pu waste impurities were completely dissolved in the solid solutions. In contrast to other phases, e.g., zirconolite and pyrochlore, yttrium stabilized cubic zirconia does not undergo amorphization upon irradiation.



Hide All
1. National Academy of Sciences, Management and Disposition of Excess Weapons Plutonium, National Academy Press, Washington D.C., 1994, 275 pages; W. Stoll, MRS Bull. March Volume, 6 (1998).
2. Oversby, V.M., McPheerers, C.C., Degueldre, C., and Paratte, J.M., J. Nucl. Mater. 245, 17 (1997).
3. Armantrout, G., Gray, L. W. and Myers, B., Plutonium immobilization form evaluation, in Proc. WM'98 CD-ROM, paper 65–1 (1998).
4. Ebbinghaus, B. B., VanKonyneburg, R. A., Ryerson, F. J., Vance, E. R., Stewart, M. W. A., Jostsons, A., Allender, J. S., Rankin, T., and Congdon, J., Ceramic formulation for the immobilization of plutonium, in Proc. WM'98 CD-ROM, paper 65–4 (1998).
5. Ringword, A.E., Kesson, S.E., Reeve, K. D., Levins, D. M., and Ramm, E. J., in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R. C., Horth-Holland, pp. 233 (1988).
6. Ewing, R. C., Weber, W. J., and Lutze, W., in Disposal of Weapon Plutonium, edited by Merz, E. R. and Walter, C. E., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 65 (1996).
7. Heimann, R. B. and Vandergraaf, T. T., J. Mater. Sci. Lett. 7, 583 (1988).
8. Li, P., Chen, I-W, and Penner-Hahn, J. E., J. Am. Ceram. Soc. 77, 1281 (1994); 77, 1289 (1994).
9. Yoshimura, M., Ceram. Bull. 67, 1950 (1988); P. Li, I-W Chen, and J.E. Penner-Hahn, J. Am. Ceram. Soc. 77, 118 (1993).
10. Carroll, D. F., J. Am. Ceram. Soc. 46, 195 (1963).
11. Cohen, I. and Schaner, B. E., J. Nucl. Mater. 9, 18 (1963).
12. Mumpton, F. A. and Roy, R., J. Am. Ceram. Soc. 43, 237 (1960).
13. Katamura., J., Seki, T., and Sakamu, T., J. Phase Equil. 16, 313 (1995).
14. Tani, E., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc. 66, 506 (1983).
15. Chang, L. L. Y., Scroger, M. G., and Philips, B., J. Am. Ceram. Soc. 50, 213 (1967).
16. Curtis, C. E. and Sowman, H. G., J. Am. Ceram. Soc. 36, 168 (1953).
17. Djurado, E., Roux, C., and Hammou, A., J. Europ. Ceram. Soc. 16, 767 (1996).
18. Asaoka, H., J. Mater. Sci. 28, 4660 (1993).
19. Narwankar, P. K., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 80, 1684 (1997).
20. Hirano, S., Yoshinaka, M., Hirota, K., and Yamaguchi, O., J. Am. Ceram. Soc. 79, 171 (1996).
21. Barret, P. and Berthet, P., J. de Phys. IV 7, 1141 (1997).
22. Yin, Y. and Argent, B. B., J.Phase Equil. 14, 439 (1993).
23. Chen, S. Y., Deng, W. B., and Shen, P. Y., Mater. Sci. Eng. B 22, 247 (1994).
24. Qadri, S. B., Skelton, E. F., Lubitz, P., Nguyen, N. V., and Khan, H. R., Thin Solid Films 291 (1996).
25. Aoyama, T., Kurata, N., Hirota, K., and Yamaguchi, O., J. Am. Ceram. Soc. 78, 3163 (1995).
26. Fagherazzi, G., Canton, P., Benedetti, A., Pinna, F., Mariotto, G., and Zanghellini, E., J. Mater. Res. 12, 318 (1997).
27. Prietzel, S., Gauckler, L. J., and Petzow, G., Science of Ceramics 9, 725 (1980).
28. Kim, D. J. and Tien, T. Y., J. Am. Ceram. Soc. 74, 3061 (1991).
29. Naguib, H. and Kelly, R., Radiat. Eff. 25, 1 (1975).
30. Fleischer, E., Norton, M., Zaleski, M., Hertl, W., and Carter, C., J. Mater. Res. 6, 1905 (1991); N. Yu, K. Sickafus, P. Kodali, and M. Nastasi, J, Nucl. Mater. 244, 266 (1997); K. E. Sickafus, Hj. Matzke, K. Yasuda, P. Chodak III, R. A. Verrall, P. G. Lucuta, H. R. Andrews, A. Turos, R. Fronknecht, and N. P. Baker, Nucl. Instru. Meth. Phys. Res. B 141, 358 (1998); C. Degueldre and J.-M. Paratte, Nucl. Tech. 123, 21 (1997); C. Degueldre, O. Heimgartner, G. Ledergerber, N. Sasajima, K. Hojou, T. Muromura, L. Wang, W. Gong, and R. Ewing, Mat. Res. Soc. Proc. Symp. 439, 625 (1997).
31. Yu, N., Devanathan, R., Sickafus, K. E., and Nastasi, M., J. Mater. Res. 12, 1766 (1997).
32. Fleischer, E., Norton, M., Zaleski, M., Hertl, W., and Carter, C., J. Mater. Res. 6, 1905 (1991).
33. Degueldre, C., Heimgartner, O., Ledergerber, G., Sasajima, N., Hojou, K., Muromura, T., Wang, L., Gong, W., and Ewing, R., Mat. Res. Soc. Proc. Symp. 439, 625 (1997).
34. Weber, W. J., Ewing, R. C., Angell, C. A., Arnold, G. W., Cormack, A. N., Delaye, J. M., Griscom, D. L., Hobbs, L. W., Navrotsky, A., Price, D. L., Stoneham, A. M., and Weinberg, M. C., J. Mater. Res. 12, 1946 (1997).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed