Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T18:55:56.131Z Has data issue: false hasContentIssue false

X-ray Spectroscopic Studies of the Bulk Electronic Structure of InGaN Alloys

Published online by Cambridge University Press:  11 February 2011

Cormac McGuinness
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
James E. Downes
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
Philip Ryan
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
Kevin E. Smith*
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
Dharanipal Doppalapudi
Affiliation:
Electrical and Computer Engineering Department, Boston University, Boston, MA 02215
Theodore D. Moustakas
Affiliation:
Electrical and Computer Engineering Department, Boston University, Boston, MA 02215
*
** Author to whom correspondence should be addressed. Electronic mail: ksmith@bu.edu.
Get access

Abstract

Synchrotron radiation excited soft x-ray emission and soft x-ray absorption spectroscopies are applied to the study of the electronic structure of InxGa1-xN alloys with (0 ≤ x ≤ 0.29). The elementally resolved partial density of states of the valence and conduction bands may be measured using these spectroscopies. The x-ray absorption spectra indicate that the conduction band broadens considerably with increasing indium incorporation. The band gap evolution as a function of indium content derives primarily from this broadening of the conduction band states. The emission spectra indicate that motion of the valence band makes a smaller contribution to the evolution of the band gap. This gap evolution differs from previous studies on the AlxGa1-xN alloy system, which observed a linear valence band shift through the series (0 < x < 1). Instead in the case of InxGa1-xN the valence band exhibits a significant shift between x = 0 and x = 0.1 with minimal movement thereafter. Furthermore, evidence of In 4d -N 2p and Ga 3d- N 2p hybridisation is reported. Finally, the thermal stability of an In011Ga089N film was investigated. Both emission and absorption spectra were found to have a temperature dependent shift in energy, but the overall definition of the spectra was unaltered even at annealing temperatures well beyond the growth temperature of the film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA

References

REFERENCES

1 Nakamura, S. and Fasol, G., The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, Berlin, 1997).Google Scholar
2 Ponce, F. A. and Bour, D. P., Nature 386, 351 (1997).Google Scholar
3 Ponce, F. A., Moustakas, T. D., Akasaki, I., et al., in Materials Research Society Symosium Proceedings (Materials Research Society, Pittsburg, 1997), Vol. 449.Google Scholar
4 Morkoc, H., Strite, S., Gao, G. B., et al., Journal of Applied Physics 76, 1363 (1994).Google Scholar
5 Morkoc, H. and Mohammad, S. N., Science 267, 51 (1995).Google Scholar
6 Kevan, S. D., Angle Resolved Photoemission (Elsevier, Amsterdam, 1991).Google Scholar
7 Bermudez, V. M., Koleske, D. D., and Wickenden, A. E., Applied Surface Science 126, 69 (1998).Google Scholar
8 Nordgren, J. and Wassdahl, N., Physica Scripta T31, 103 (1990).Google Scholar
9 Stagarescu, C. B., Duda, L.-C., Smith, K. E., et al., Physical Review B 54, 17335 (1996).Google Scholar
10 Smith, K. E., Duda, L.-C., Stagarescu, C. B., et al., Journal of Vacuum Science and Technology B 16, 2250 (1998).Google Scholar
11 Duda, L.-C., Stagarescu, C. B., Downes, J., et al., Physical Review B 58, 1928 (1998).Google Scholar
12 Ryan, P., McGuinness, C., Downes, J. E., et al., Physical Review B 65, art. no. (2002).Google Scholar
13 Doppalapudi, D., Basu, S. N., Ludwig, K. F. Jr, et al., J. Appl. Phys. 84, 1389 (1998).Google Scholar
14 Doppalapudi, D., Basu, S. N., and Moustakas, T. D., Journal of Applied Physics. 85, 883 (1999).Google Scholar
15 Bellaiche, L., Mattila, T., Wang, L. W., et al., Applied Physics Letters 743, 1842 (1999).Google Scholar
16 Saito, T. and Arakawa, Y., Physical Review B 60, 1701 (1999).Google Scholar
17 Albanesi, E. A., Lambrecht, W. R. L., and Segall, B., Physical Review B 48, 17841 (1993).Google Scholar
18 Pereira, S., Correia, M. R., Monteiro, T., et al., Journal of Crystal Growth 230, 448 (2001).Google Scholar
19 Pereira, S., Correia, M. R., Monteiro, T., et al., Applied Physics Letters 78, 2137 (2001).Google Scholar
20 McCluskey, M. D., Van de Walle, C. G., Master, C. P., et al., Applied Physics Letters 72, 2725 (1998).Google Scholar
21 Van de Walle, C. G., McCluskey, M. D., Master, C. P., et al., Materials Science and Engineering B-Solid State Materials For Advanced Technology 59, 274 (1999).Google Scholar
22 Vurgaftman, I., Meyer, J. R., and Ram-Mohan, L. R., Journal of Applied Physics 89, 5815 (2001).Google Scholar
23 Osamura, K., Naka, S., and Murakami, Y., Journal of Applied Physics 46, 3432 (1975).Google Scholar
24 Wetzel, C., Takeuchi, T., Yamaguchi, S., et al., Applied Physics Letters 73, 1994 (1998).Google Scholar
25 Wagner, J., Ramakrishnan, A., Behr, D., et al., MRS Internet Journal of Nitride Semiconductor Research 4, U111 (1999).Google Scholar
26 Goano, M., Bellotti, E., Ghillino, E., et al., Journal of Applied Physics 88, 6476 (2000).Google Scholar
27 O′Donnell, K. P., Martin, R. W., Trager-Cowan, C., et al., Materials Science and Engineering B-Solid State Materials For Advanced Technology 82, 194 (2001).Google Scholar
28 Kalashnikov, E. V. and Nikolaev, V. I., Mrs Internet Journal of Nitride Semiconductor Research 2, 18 (1997).Google Scholar
29 Singh, R., Doppalapudi, D., Moutakas, T. D., et al., Applied Physics Letters 70, 1089 (1997).Google Scholar
30 El-Masry, N. A., Piner, E. L., Liu, S. X., et al., Appl. Phys. Lett. 72, 40 (1998).Google Scholar
31 Ho, I. H. and Stringfellow, G. B., Mater. Res. Soc. Symp. Proc. 449, 871 (1997).Google Scholar
32 Ho, I. H. and Stringfellow, G. B., Appl. Phys. Lett. 69, 2701 (1996).Google Scholar
33 Downes, J. E., Smith, K. E., Matsuura, A. Y., et al., (MAX-lab Activity Report, Lund, 2000), p. 74.Google Scholar