Skip to main content Accessibility help
×
Home

X-ray scattering: a wonderful tool to probe lattice strains in materials with small dimensions

  • Olivier Thomas (a1), Audrey Loubens (a1) and Patrice Gergaud (a1)

Abstract

X-ray diffraction was recognized from the early days as highly sensitive to atomic displacements. Indeed structural crystallography has been very successful in locating with great precision the position of atoms within an individual unit cell. In disordered systems it is the average structure and fluctuations about it that may be determined. In the field of mechanics diffraction may thus be used to evaluate elastic displacement fields. In this short overview we give examples from recent work where x-ray diffraction has been used to investigate average strains in lines, films or multilayers. In small objects the proximity of surfaces or interfaces may create very inhomogeneous displacement fields. X-ray scattering is again one of the best methods to determine such distributions. The need to characterize displacement fields in nanostructures together with the advent of third generation synchrotron radiation sources has generated new and powerful methods (anomalous diffraction, coherent diffraction, microdiffraction, …). We review some of the recent and promising results in the field of strain measurements in small dimensions via X-ray diffraction.

Copyright

References

Hide All
[1] See e.g. Birnbaum, J., Williams, R., Phys. Today Jan 2000.
[2] Arzt, E., Prog. Mat. Sci. 46, 283 (2001).
[3] Lester, H. and Aborn, R., Army Ordnance 6, 120 (1925).
[4] Sachs, G., Weerts, J., Z. Physik 64, 344 (1930).
[5] Noyan, I. and Cohen, J., Residual stress: Measurement by diffraction and interpretation, (Springer, New York, 1987).
[6] Clemens, B. and Bain, J., MRS Bulletin 17–7, 46 (1992).
[7] Besser, P., Brennan, S., Bravman, J., J. Mat. Res. 9, 13 (1996).
[8] Thomas, O., Shen, Q., Schieffer, P., Tournerie, N., Lepine, B., Phys. Rev. Lett. 90, 017205 (2003).
[9] Labat, S., Gergaud, P., Thomas, O., Gilles, B., Marty, A., J. Appl. Phys. 87, 1172 (2000).
[10] Labat, S., Gergaud, P., Thomas, O., Gilles, B., Marty, A., Appl. Phys. Lett. 75, 914 (1999).
[11] Raabe, D., Sachtleber, M., Zhao, Z., Roters, F., Zaefferer, S., Acta Mat. 49, 3433 (2001).
[12] Spolenak, R., Brown, W., Tamura, N., MacDowell, A., Celestre, R., Padmore, H., Valek, B., Bravman, J.C., Marieb, T., Fujimoto, H., Batterman, B., Patel, J., Phys. Rev. Lett. 90, 096102 (2003). See also this proceeding.
[13] Bergemann, C., Keymeulen, H., J.F. van der Veen, Phys. Rev. Lett. 91, 204801 (2003).
[14] Williamson, G., Hall, W., Acta Met. 1, 52 (1953).
[15] Mittemeijer, E. J., Scardi, P., Diffraction Analysis of the Microstructure of Materials, Springer-Verlag, Berlin Heidelberg 2004.
[16] Shen, Q., Kycia, S., Phys. Rev. B 55, 15791 (1997).
[17] Robinson, I.K., Vartanyants, I., Appl. Surf. Sci. 182, 186 (2001).
[18] Holy, V., Darhuber, A., Bauer, G., Wang, P., Song, Y., Sotomayor Torres, C., Holland, M., Phys. Rev. B 52, 8348 (1995).
[19] Bocquet, F., Gergaud, P. and Thomas, O., J. Appl. Cryst. 36, 154 (2003).
[20] Renevier, H., Hodeau, J-L., Wolfers, P., Andrieu, S., Weigelt, J., Frahm, R., Phys. Rev. Lett. 78, 2775 (1997).
[21] Bigault, T., Bocquet, F., Labat, S., Thomas, O., Renevier, H., Phys. Rev B. 64, 125414 (2001).
[22] Letoublon, A., Favre-Nicolin, V., Renevier, H., Proietti, M.G., Monat, C., Gendry, M., Marty, O., Priester, C., Phys. Rev. Lett. 92, 186101 (2004).
[23] Kaganer, V., Jenichen, B., Paris, G., Ploog, K., Konovalov, O., Mikulik, P., Arai, S., Phys. Rev. B 66, 035310 (2002).
[24] Loubens, A., Fortunier, R., Thomas, O., to be published.
[25] Joo, H.D., Kim, J.S., Kim, K.H., Tamura, N. and Koo, Y.M., Scripta Materialia 51, 1183 (2004).
[26] Erdélyi, Z., Sladecek, M., Stadler, L-M., Zizak, I., Langer, G. A., Kis-Varga, M., Beke, D. and Sepiol, B., Science 306, 1913 (2004).
[27] Gergaud, P., Rivero, C., Gailhanou, M., Thomas, O., Froment, B., Jaouen, H., Mat. Sci. Eng. B 114–115, 67 (2004).
[28] Bérar, J.-F., Blanquart, L., Boudet, N., Breugnon, P., Caillot, B., Clemens, J.-C., Delpierre, P., Koudobine, I., Mouget, C., Potheau, R. and Valin, I. J. Appl. Cryst. 35, 471 (2002).
[29] Orthen, A., Wagner, H., Martoiu, S., Amenitsch, H., Bernstorff, S., Besch, H.-J., Menk, R.-H., Nurdan, K., Rappolt, M., Walenta, A. H. and Werthenbach, U., J. Synchrotron Rad. 11, 177 (2004).

X-ray scattering: a wonderful tool to probe lattice strains in materials with small dimensions

  • Olivier Thomas (a1), Audrey Loubens (a1) and Patrice Gergaud (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed