Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-24T06:48:10.099Z Has data issue: false hasContentIssue false

X-ray Microbeam Investigation of Deformation Microstructure in Microindented Cu

Published online by Cambridge University Press:  15 February 2011

Wenge Yang
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
B. C. Larson
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
G. M. Pharr
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 University of Tennessee, Knoxville, Tennessee 37996
G. E. Ice
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J. Z. Tischler
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J. D. Budai
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Wenjun Liu
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

The deformation microstructure under spherical microindents in single crystal Cu has been investigated with submicron spatial resolution using x-ray structural microscopy. A polychromatic, submicron diameter (∼ 0.5 μm) microbeam was used in combination with micronresolution depth profiling to make direct, nondestructive measurements of plastic deformation induced lattice rotations under an indent made with a 69 μm radius spherical indenter and 200 mN maximum load. Lattice orientations relative to the undeformed crystal were determined as a function of position under the indent using differential-aperture x-ray structural microscopy (DAXM). Rotation-axes and misorientation-angles were determined for micron steps along selected microbeam penetration directions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Thompson, J.B., Kindt, J. H, Drake, B., Hansma, H.G., Morse, D.E. and Hansma, P.K., Nature, 414, 773 (2001).Google Scholar
[2] Lawn, B.R., Padture, N.P., Cai, H.D. and Guiberteau, F., Science, 263, 1114 (1994).Google Scholar
[3] Swadener, J.G., George, E.P., Pharr, G.M., J. Mech Phys. Solids, 50, 681 (2002).Google Scholar
[4] Xue, Z., Huang, Y., Hwang, K.C. and Li, M., J. Eng. Mater–T ASME, 124, 371 (2002).Google Scholar
[5] Hughes, D.A. and Hansen, N., Acta Mater., 45, 3871 (1997).Google Scholar
[6] Giessen, E. Van der and Needleman, A., Script Mater., 48, 127 (2003).Google Scholar
[7] Ma, Q. and Clarke, D.R., J. Mater. Res., 10, 853 (1995).Google Scholar
[8] Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V. and Munroe, P., Appl. Phys. Lett., 77, 3749 (2000).Google Scholar
[9] Zarudi, I., Zou, J. and Zhang, L.C., Appl. Phys. Lett., 82, 874(2003).Google Scholar
[10] Bahr, D.F., Nibur, K.A., Morasch, K.R. and Field, D.P., JOM, 55(2), 47 (Feb. 2003).Google Scholar
[11] Harvey, S., Huang, H., Venkataraman, S. and Gerberich, W.W., J. Mater. Res. 8, 1291 (1993).Google Scholar
[12] Poulsen, H.F., Nielsen, S.F., Lauridsen, E.M., Schmidt, S., Suter, R.M., Lienert, U., Margulies, U., Lorentzen, T., and Jensen, D. Juul, J. Appl. Cryst. 34, 751 (2001).Google Scholar
[13] Margulies, L., Winther, G., and Poulsen, H.F., Science 292, 2392 (2001).Google Scholar
[14] Larson, B.C., Yang, W., Ice, G.E., Budai, J.D. and Tischler, J.Z., Nature, 415, 887 (2002).Google Scholar
[15] Ice, G.E. and Larson, B.C., Adv. Eng. Mat., 2, 643 (2000).Google Scholar
[16] Yang, W., Larson, B.C., Pharr, G.M., Ice, G.E., Swadener, J.G., Budai, J.D., Tischler, J.Z. and Liu, W., Mat. Res. Soc. Symp. Proc. 750, Y8.26 (2003).Google Scholar
[17] Barabash, R., Ice, G.E., Larson, B.C., Pharr, G.M., Chung, K.-S., and Yang, W., Appl. Phys. Lett. 79, 4 (2001).Google Scholar