Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-16T13:07:15.570Z Has data issue: false hasContentIssue false

X-Ray Diffraction and Scanning Electron Microscopy Studies of Molybdenum Trioxide Prepared by Thermal Oxidation of Electrodeposited Molybdenum Sulfide

Published online by Cambridge University Press:  28 February 2011

Daniel BÉLanger
Affiliation:
Département de Chimie, Université du Québec à Montréal, C.P. 8888, succursale "A", Montréal (Québec), Canada, H3C 3P8
Guylaine Laperriere
Affiliation:
Département de Chimie, Université du Québec à Montréal, C.P. 8888, succursale "A", Montréal (Québec), Canada, H3C 3P8
Michel Preda
Affiliation:
Département de Science de la terre, Université du Québec à Montréal, C.P. 8888, succursale "A", Montréal (Québec), Canada, H3C 3P8
Get access

Abstract

Scanning electron microscopy and X-ray diffraction have been used to characterize the transformation of electrodeposited molybdenum trisulfide thin film and powder to molybdenum trioxide. Scanning electron microscopy shows that the formation of molybdenum trioxide is accompanied by an enhancement of the surface area of the film as the relatively smooth molybdenum trisulfide is converted to molybdenum trioxide displaying a platelet structure. X-Ray diffraction revealed that amorphous molybdenum sulfide is converted to polycrystalline molybdenum oxide upon heating in air above 400°C. The observed diffraction peaks obtained when molybdenum sulfide was heated at 400°C for 15 min. correspond fairly well with those of orthorhombic molybdenum trioxide. However, when the molybdenum sulfide powder was heated at 400°C for a period of only about 2 min., additional diffraction peaks were observed. The latter can be attributed to monoclinic molybdenum dioxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kumagai, N., Kumagai, N. and Tanno, K., J. Appl. Electrochem., 18, 857 (1988).CrossRefGoogle Scholar
2. Firment, L.E. and Ferretti, A., Surf. Sci., 129, 155 (1983) and references therein.CrossRefGoogle Scholar
3. Lampert, C.M., Sol. Energy Mater.,.1, 11 (1984).Google Scholar
4. Baba, N., Morisaki, S. and Nishiyama, N., Jpn. J. Appl. Phys., 33, L638 (1984).CrossRefGoogle Scholar
5. Guerfi, A. and Dao, L.H., J. Electrochem. Soc., 136 2435 (1989).CrossRefGoogle Scholar
6. Yao, J.N., Loo, B.H., Hashimoto, K. and Fujishima, A., J. Electroanal. Chem., 290, 263 (1990).CrossRefGoogle Scholar
7. Bélanger, D. and Laperrière, G., Chem. Mater., 2, 484 (1990).CrossRefGoogle Scholar
8. Divigalpitiya, W.M.R., Frindt, R.F. and Morrison, S.R., Thin Solid Films, 188, 173 (1990).CrossRefGoogle Scholar
9. Guay, D., Tourillon, G., Laperrière, G. and Bélanger, D., in preparation.Google Scholar
10. Bhattacharya, R.N., Lee, C.Y., Pollak, F.H. and Schleich, D.M., J. Non-Cryst. Solids, 91, 235 (1987).CrossRefGoogle Scholar
11. Laperrìere, G., Marsan, B. and Bélanger, D., Synth. Met., 29, 201 (1989).CrossRefGoogle Scholar
12. Bélanger, D. and Laperrière, G., in preparation.Google Scholar
13. Kihlborg, L., Ark. Kemi, 21, 357 (1963).Google Scholar
14. Cullity, B.D., Elements of X-Ray Diffraction, Addison-Wesley, Reading, 1978, p. 102.Google Scholar
15. Joint Commitee on Powder Diffraction Standards, File A 5-0452.Google Scholar
16. Kihlborg, L., Acta Chem. Scand., 13, 954 (1959).CrossRefGoogle Scholar
17. Harb, F., Gérand, B., Nowogrocki, G. and Figlarz, M., Solid State Ionics, 32/33, 84 (1989).Google Scholar
18. McCarron, E.M. III, J. Chem. Soc., Chem. Commun., 336 (1986).Google Scholar
19. Svensson, G. and Kihlborg, L., React. Solids, 3, 33 (1987).CrossRefGoogle Scholar