Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T20:34:08.937Z Has data issue: false hasContentIssue false

X-Ray Diffraction analysis of Au/Ni Multilayers

Published online by Cambridge University Press:  21 February 2011

J. Chaudhuri
Affiliation:
The Wichita State University, Wichita, KS 67208
S. Shah
Affiliation:
The Wichita State University, Wichita, KS 67208
A. F. Jankowski
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

X-ray diffraction is a useful method to measure the microscopic strain profile in multilayered materials. Depth profiles of strain in the modulation direction are obtained by an iterative fitting of the experimental diffraction pattern with a kinematic model. This approach was used to characterize the coherency strain profile in Au/Ni superlattices.

The accommodation of coherency strain through the superlattice is dependent upon the atomic misfit between the component materials and the thickness of each layer. The depth profile of strain was determined for multilayers with repeat periodicities of 2.92 nm and 4.26 nm. A significant volume fraction of interfaces is present in these nanometric dimensioned laminates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schuller, I. K., Phys. Rev. Lett. 44, 1597 (1980).Google Scholar
2. Gyorgy, E. M., Mcwhan, D. B., Dillon, J. F. Jr., Walker, L. R. and Wasczak, J. V., Phys. Rev. B 25, 6739 (1982).Google Scholar
3. Khan, M. R., Chun, C. S. L., Felcher, G. P., Grimsditch, M., Kueny, A., Falco, C. M. and Schuller, I. K., Phys. Rev. B 27, 7186 (1983).Google Scholar
4. Fujii, Y., Ohnishi, T., Ishihara, T., Yamada, Y., Kawaguchi, K., Nakayama, N. and Shinjo, T., J. Phys. Soc. Japan 55, 251 (1986).Google Scholar
5. Mitura, Z. and Mikolajczak, P., J. Phys. F: Met. Phys. 18, 183 (1988).Google Scholar
6. Speriosu, V. S., J. Appl. Phys. 52(10), 6094 (1981)Google Scholar
7. Speriosu, V. S. and Vreeland, T. Jr., J. Appl. Phys. 56(6), 1591 (1984).Google Scholar
8. Jankowski, A. F., J. Phys. F: Met. Phys. 18, 413 (1988).Google Scholar
9. Ibers, J. A. and Hamilton, W. C., eds., International Tables for X-Ray Crystallography, Vol. IV (Kynoch, Birmingham, 1974)Google Scholar
10. Yang, W. M. C., Ph. D. Thesis, Northwestern University, Evanston, II (1971).Google Scholar
11. Yang, W. M. C., Tsakalakos, T. and Hillard, J. E., J. Appl. Phys. 48, 876(1977).Google Scholar