Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T23:02:41.488Z Has data issue: false hasContentIssue false

XPS Study of Buried Metal/Polymer and Polymer/Metal Interface

Published online by Cambridge University Press:  15 February 2011

P. K. Wu*
Affiliation:
Department of Physics, Southern Oregon State College, Ashland, OR 97520.
Get access

Abstract

Metal/Polymer systems have potential applications as interconnect materials in integrated circuits. Polymers with low dielectric constants, if used as interlayer dielectric, can reduce the RC time constant. Device speed can be doubled if a polymer can replace the present dielectric material, SiO2. However, the problem of weak metal/polymer adhesion must be understood and resolved. In situ deposition and analysis are the most controlled means to study an interface formation process. However, for practical reasons, i.e., application, time, cost, and flexibility, it is critical to study metal/polymer interface ex situ. X-ray Photoelectron Spectroscopy (XPS), can be used to determine the composition and bonding structures of buried interfaces. This is achieved by examining peeled surfaces, thin overlayer, and lowenergy- ion sputtered surfaces. The possible adhesion mechanism or failure mode is determined by correlating XPS results with adhesion strength. Based on these results, adhesion enhancement methods, such as substrate surface treatments, can be formulated. The product of these treatments can be evaluated using the same analysis. These techniques for studying buried interfaces using XPS are reviewed and results of their applications to the metal/Teflon AF 1600 interface is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Singer, P., Semiconductor International, 11, 50 (October 1993).Google Scholar
2. McDonald, J.G., Lin, J.T., Greub, H.J., Philhower, R.A. and Dabral, S., IEEE Trans. Comp. Hybrids. Manuf. Technol. 12, 195 (1989).Google Scholar
3. Soane, D.S. and Martynenko, Z., Polymers in Microelectronics- Fundamentals and Applications, (Elsevier, New York, 1989).Google Scholar
4. You, L., Yang, G.-R., Lang, C.-I., Moore, J. A., McDonald, J.F.P., and Lu, T.-M., J. Vac. Sci. Technol. A, 11 (6), 3047 (1993).Google Scholar
5. Baglin, J.E.E., IBM J. Res. Develop. 38 (4),413 (July 1994)Google Scholar
6. Kim, Y.-K., Chang, C.-A., and Schrott, A.G., J. Appl. Phys. 67 (1), 251 (January 1990)Google Scholar
7. Egitto, F.D. and Matienzo, L.J., IBM J. Res. Develop. 38 (4), 423 (July 1994)Google Scholar
8. Love, B.J. and Packman, P.F., J. Adhesion, 40, 139 (1993)Google Scholar
9. Buchman, A., Dodiuk, H., Rotel, M. and Zahavi, J., J. Adhesion Sci. Technol. 8 (10), 1211 (1994).Google Scholar
10. Collaud, M., Groening, P., Nowak, S., and Schlapbach, L., J. Adhesion Sci. Technol. 8 (10), 115(1994).Google Scholar
11. Lee, K.-W. and Viehbeck, A., IBM J. Res. Develop. 38 (4),457 (July 1994)Google Scholar
12. Siperko, L.M. and Thomas, R.R., J. Adhesion Sci. Technol. 3 (3), 157 (1989)Google Scholar
13. Clearfield, H.M., McNamara, D.K., and Davis, Guy D., in Adhesive Bonding, edited by Lee, L.- H., (Plenum Press, New York, 1991), pp. 203.Google Scholar
14. Shi, M-K., Lamontagne, B., 1. Martinu, and Selmani, A., J. Appl. Phys. 74 (3), 1744 (August 1993)Google Scholar
15. van Ooij, W.J., in Physiochemical Aspects of Polymer Surface, edited by Mittal, K.L., (Plenum Press, New York, 1983) pp. 1035.Google Scholar
16. Chang, C.-A., Baglin, J.E.E., Schrott, A.G., and Lin, K.C., Appl. Phys. Lett. 51 (2), 103 (July 1987).Google Scholar
17. Chang, C.-A., Appl. Phys. Lett. 51 (16), 1236 (October 1987).Google Scholar
18. Kinloch, A.J., J. Mater. Sci., 15, 211 (1980).Google Scholar
19. Akande, A.R. and Lowell, J., J. Phys. D: Appl. Phys. 20, 565 (1978).Google Scholar
20. Derjaguin, B.V. and Toporov, Y.P., in Physiochemical Aspects of Polymer Surfaces, (Plenum Press, New York, 1983 ) pp. 605.Google Scholar
21. van Ooij, W.J., Rubber Chem. Technol. 52, 605 (1979).Google Scholar
22. van Ooij, W.J., Weening, W.E., and Murray, P.F., Rubber Chem. Technol. 54, 227 (1981).Google Scholar
23. Siperko, L.M. and Thomas, R.R., J. Adhesion Sci. Technol. 3, 157 (1989).Google Scholar
24. Park, J.M., Matienzo, L.J. and Spencer, D.F., J. Adhesion Sci. Technol. 5, no. 2, 153 (1991).Google Scholar
25. Practical Surface Analysis, edited by Briggs, D. and Seah, M.P., (John Wiley & Sons Ltd, New York, 1990).Google Scholar
26. Briggs, D. and Beamson, G., Analytical Chemistry, 84 (15), 1729 (August 1992).Google Scholar
27. Pan, F.-M., Lin, Y.-L., and Horng, S.R., Appl. Sur. Sci. 47, 9 (1991).Google Scholar
28. Atanasoska, L. and Anderson, S.G., Meyer, J.M. III, and Weaver, J.H., Vacuum, 40 (1/2), 85 (1990).Google Scholar
29. Resnick, P.R., Polym. Prepr. 31, 312 (1990).Google Scholar
30. A brochure detailing the technical properties of the Teflon AF 1600 product can be obtained from the Du Pont corporation, Wilmington, DE; for safety information specify “Teflon AF: Safety in Handling and Use,” No. H07805.Google Scholar
31. Nason, T.C., Moore, J.A., and Lu, T.-M., Appl. Phys. Lett. 60 (15), 1866 (1992).Google Scholar
32. Chow, R., Spragge, M.K., Loomis, G.E., Rainer, F., Ward, R., Thomas, I.M., and Kozlwski, M.R., preprint, submitted for Materials Research Society Symposium Proceeding, Fall 1993.Google Scholar
33. Blanchet, G. B., Appl. Phys. Lett. 62 (5), 479, (1993).Google Scholar
34. Hanford, W.E. and Joyce, R.M., J. Amer. Chem. Soc. 68, 2081 (1946).Google Scholar
35. Holland, L., J. Vac. Sci. Technol. 14, 15 (1977).Google Scholar
36. see for example, Wagner, C.D., Riggs, W.M., Davis, L.E., and Moulder, J.F., ”Handbook of X-ray Photoelectron Spectroscopy”. Perkin-Elmer Corp., Eden Prarie, MN.Google Scholar
37. Wu, P.K., Yang, G.-R., Ma, X.-F., and Lu, T.-M., Appl. Phys. Lett. 65 (4), 508 (1994).Google Scholar