Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T14:30:15.141Z Has data issue: false hasContentIssue false

Wide-gap P-type Conductive Properties in Layered Oxychalcogenides

Published online by Cambridge University Press:  11 February 2011

Kazushige Ueda
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226–8503, JAPAN
Kouhei Takafuji
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226–8503, JAPAN
Hidenori Hiramatsu
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226–8503, JAPAN Hosono Project, ERATO, JST, KSP C-1232, 3–2–1 Sakado, Takatsu, Kawasaki 213–0012, JAPAN
Hiromichi Ohta
Affiliation:
Hosono Project, ERATO, JST, KSP C-1232, 3–2–1 Sakado, Takatsu, Kawasaki 213–0012, JAPAN
Masahiro Hirano
Affiliation:
Hosono Project, ERATO, JST, KSP C-1232, 3–2–1 Sakado, Takatsu, Kawasaki 213–0012, JAPAN
Hideo Hosono
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226–8503, JAPAN Hosono Project, ERATO, JST, KSP C-1232, 3–2–1 Sakado, Takatsu, Kawasaki 213–0012, JAPAN
Hiroshi Kawazoe
Affiliation:
R&D Center, HOYA Corporation, 3–3–1 Musashino, Akishima 196–8510, JAPAN
Get access

Abstract

Several Cu(I)-containing layered oxysulfides were selected as candidates for wide-gap p-type semiconductors by extending a concept of a materials design for transparent p-type conducting oxides. The electrical and optical properties of the selected oxysulfides were investigated, and their electronic structures were analyzed by energy band calculations. LaCuOS, Sr2Cu2ZnO2S2 and Sr2CuGaO3S were found to be wide-gap p-type semiconductors, and LaCuOS showed the largest energy gap (Eg=3.1eV) among these layered oxysulfides. It was also found that LaCuOS shows band edge emission under uv excitation at room temperature, which is consistent with the results of the energy band calculations that LaCuOS has a direct-allowed-type energy gap at Γ point. In further materials research, analogous layered oxychalcogenides such as LaCuOSe and LnCuOS (Ln=Pr, Nd) were found to show similar optical and electrical properties to those of LaCuOS. Therefore, it is considered that the layered crystal structure and the electronic structure are responsible for the wide-gap p-type conductive properties in these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ginley, D. S. and Bright, C., MRS Bull. 25, 15 (2000)Google Scholar
2. Gordon, R. G., MRS Bull. 25, 52 (2000)Google Scholar
3. Hamberg, I. and Granqvist, C.G., J. Appl. Phys. 60, R123 (1986)Google Scholar
4. Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H. and Hosono, H., Nature (London) 389, 939 (1997)Google Scholar
5. Yanagi, H., Inoue, S., Ueda, K., Kawazoe, H. and Hosono, H., J. Appl. Phys. 88, 4159 (2000)Google Scholar
6. Stauber, R. E., Perkins, J. D., Parilla, P. A. and Ginley, D. S., Electrochemical and Solid-State Letters 2, 654 (1999)Google Scholar
7. Gong, H., Wang, Y. and Luo, Y., Appl. Phys. Lett. 76, 3959 (2000)Google Scholar
8. Yanagi, H., Kudo, A., Ueda, K., Hosono, H. and Kawazoe, H., J. Electroceram. 4, 427 (2000)Google Scholar
9. Ueda, K., Hase, T., Yanagi, H., Kawazoe, H., Hosono, H., Ohta, H., Orita, M. and Hirano, M., J. Appl. Phys. 89, 1790 (2001)Google Scholar
10. Yanagi, H., Hase, T., Ibuki, S., Ueda, K. and Hosono, H., Appl. Phys. Lett. 78, 1583 (2001)Google Scholar
11. Duan, N. and Sleight, A. W., Jayaraj, M. K. and Tate, J., Appl. Phys. Lett. 77, 1325 (2000)Google Scholar
12. Nagarajan, R., Draeseke, A. D., Sleight, A. W. and Tate, J., J. Appl. Phys. 89, 8022 (2001)Google Scholar
13. Kudo, A., Yanagi, H., Hosono, H. and Kawazoe, H., Appl. Phys. Lett. 73, 220 (1998)Google Scholar
14. Kudo, A., Yanagi, H., Ueda, K., Hosono, H., Kawazoe, H. and Yano, Y., Appl. Phys. Lett. 75, 2851 (1999)Google Scholar
15. Yanagi, H., Ueda, K., Ohta, H., Orita, M., Hirano, M. and Hosono, H., Solid State Commun. 121, 15 (2002)Google Scholar
16. Ohta, H., Kawamura, K., Orita, M., Sarukura, N., Hirano, M. and Hosono, H., Electron. Lett. 36, 1 (2000)Google Scholar
17. Ohta, H., Kawamura, K., Orita, M., Sarukura, N., Hirano, M. and Hosono, H., Appl. Phsy. Lett. 77, 475 (2000)Google Scholar
18. Kawazoe, H., Yanagi, H., Ueda, K. and Hosono, H., Mater. Res. Bull. 25, 29 (2000)Google Scholar
19. Grozdanov, I. and Najdoski, M., J. Solid State Chem. 114, 469 (1995)Google Scholar
20. Ouammou, A., Bahout, M. M., Pena, O., Halet, J. F., Saillard, J. Y., and Carel, C., J. Solid State Chem. 117, 73 (1995)Google Scholar
21. Park, S., Keszler, D. A., Valencia, M. M., Hoffman, R. L., Bender, J. P., and Wager, J. F., Appl. Phys. Lett. 80, 4393 (2002)Google Scholar
22. Ueda, K., Inoue, S., Hirose, S., Kawazoe, H. and Hosono, H., Appl. Phys. Lett. 77, 2701 (2000)Google Scholar
23. Ueda, K., Hirose, S., Kawazoe, H. and Hosono, H., Chem. Mater. 13, 1880 (2001)Google Scholar
24. Palazzi, M., Acad. Sci., Paris C. R. 292, 789 (1981)Google Scholar
25. Zhu, W. J. and Hor, P. H., J. Solid State Chem. 130, 319 (1997)Google Scholar
26. Zhu, W. J. and Hor, P. H., Inorg. Chem. 36, 357 (1997)Google Scholar
27. Zhu, W. J. and Hor, P. H., J. Solid State Chem. 134, 128 (1997)Google Scholar
28. Zhu, W. J., Huang, Y. Z., Dong, C. and Zhao, Z. X., Mater. Res. Bull. 29, 143 (1994)Google Scholar
29. Hiramatsu, H., Orita, M., Hirano, M., Ueda, K. and Hosono, H., J. Appl. Phys. 91, 9177 (2002)Google Scholar
30. Hirose, S., Ueda, K., Kawazoe, H., and Hosono, H., Chem. Mater. 14, 1037 (2002)Google Scholar
31. Ueda, K., Inoue, S., Hosono, H., Sarukura, N. and Hirano, M., Appl. Phys. Lett. 78, 2333 (2001)Google Scholar
32. Inoue, S., Ueda, K., Hosono, H. and Hamada, N., Phys. Rev. B 64, 245211 (2001)Google Scholar
33. Ueda, K. and Hosono, H., Thin Solid Films 411, 115 (2002)Google Scholar
34. Ueda, K. and Hosono, H., J. Appl. Phys. 91, 4768 (2002)Google Scholar
35. Ueda, K., Takafuji, K., and Hosono, H., J. Solid State Chem. (in press)Google Scholar